Butterflies and moths (Lepidoptera) comprise significant portions of the world’s natural history collections, but a standardized tissue preservation protocol for molecular research is largely lacking. Lepidoptera have traditionally been spread on mounting boards to display wing patterns and colors, which are often important for species identification. Many molecular phylogenetic studies have used legs from pinned specimens as the primary source for DNA in order to preserve a morphological voucher, but the amount of available tissue is often limited. Preserving an entire specimen in a cryogenic freezer is ideal for DNA preservation, but without an easily accessible voucher it can make specimen identification, verification, and morphological work difficult. Here we present a procedure that creates accessible and easily visualized “wing vouchers” of individual Lepidoptera specimens, and preserves the remainder of the insect in a cryogenic freezer for molecular research. Wings are preserved in protective holders so that both dorsal and ventral patterns and colors can be easily viewed without further damage. Our wing vouchering system has been implemented at the University of Maryland (AToL Lep Collection) and the University of Florida (Florida Museum of Natural History, McGuire Center of Lepidoptera and Biodiversity), which are among two of the largest Lepidoptera molecular collections in the world.
more »
« less
Who is that?! Using Genetic and Morphological Data to Identify Cryptic African Tree Frog Specimens in Natural History Collections
Natural history collections are important resources for research and conservation. Unfortunately, sometimes certain taxa can be hard to identify to the species level or can be misidentified, impacting how those specimens and their accompanying data are used for future research and conservation. African tree frogs (Family Arthroleptidae, Genus Leptopelis) are a group of big-eyed tree frogs found across Sub-Saharan Africa. While they have morphological differences that can help tell members of the genus apart, when in the field species can look similar to each other which gives rise to them being misidentified or unidentified in collections. In particular, Leptopelis exhibit extensive intraspecific variation in coloration and pattern that makes identification based solely on morphology challenging. The goal of this project is to use DNA barcoding of the 16s mtDNA gene and morphological characteristics to update the identification of “Leptopelis sp.” specimens that are part of the California Academy of Science’s Herpetology collection to the species level. By comparing the genetic and morphological data collected to identified reference specimens in the Academy’s collection we can confirm species identification and update the Academy’s database. Having the opportunity to identify species in natural history collections using both genetic and morphological analysis helps us better understand what species are found in an area, and can reveal new localities and range expansions of poorly known species. These data serve as an important baseline for monitoring how species are adapting to global change and enable future research on these poorly known, charismatic frogs.
more »
« less
- Award ID(s):
- 2243994
- PAR ID:
- 10502216
- Publisher / Repository:
- Society for the Advancement of Chicanos/Hispanics and Native Americans in Science - 2023 NDiSTEM
- Date Published:
- Format(s):
- Medium: X
- Location:
- Portland, OR
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Bathydraconidae (Notothenioidei) are a group of benthic fishes endemic to the Southern Ocean. Because of their recent evolutionary radiation and limited sampling efforts due to their occurrence in remote regions, their diversity is likely underestimated. Akarotaxis nudiceps, currently the only recognized member of its genus, is an especially poorly known bathydraconid. Although A. nudiceps has a circumpolar distribution on the Antarctic continental shelf, its deep habitat and rarity limit knowledge of its life history and biology. Using a combination of morphological and genetic analyses, we identified an undescribed species of this genus, herein named Akarotaxis gouldae sp. nov. (Banded Dragonfish). The separation of this species was initially identified from archived larval specimens, highlighting the importance of early life stage taxonomy and natural history collections. All currently known adult and larval A. gouldae sp. nov. specimens have been collected from a restricted ~400 km coastal section of the western Antarctic Peninsula, although this is possibly due to sampling bias. This region is targeted by the epipelagic Antarctic krill fishery, which could potentially capture larval fishes as bycatch. Due to the extremely low fecundity of A. gouldae sp. nov. and near-surface occurrence of larvae, we suggest the growing Antarctic krill fishery could negatively impact this speces.more » « less
-
Evans, Alistair; Peecook, Brandon; Bai, Bin; Benito, Juan; Capobianco, Alessio; Chapelle, Kimberley; Chiarenza, Alfio; Davis, Brian; Delcourt, Rafael; Ehret, Dana (Ed.)Interpretations of extinct vertebrate anatomy, behavior, and life history are built upon comparative anatomy data from neontological collections. Ideally, these interpretations are informed by metadata collected while the organism was alive such as diet, mass throughout life, social relationships, and reproductive history. Unfortunately, these data are not available for many specimens as natural history collections have focused on wild-caught individuals for which mass at collection, sex, and collection locality are typically the only associated data. In contrast, extensive life-history data are collected from organisms in sustained human care, but transferring these data from zoos to natural history collections is not standardized or prioritized. The Duke Lemur Center (DLC) has been designing a database that allows researchers access to morphological and life-history data derived from animals that were part of the living research colony. The DLC is home to over 200 lemurs representing 16 different species. The colony has access to open air, multi-acre habitats. For over 50 years the AZA-accredited DLC has been a platform for non-invasive research on strepsirrhine primates and the DLC Museum is the repository for DLC specimens and fossils related to the evolution of primates. The colony’s breeding records, veterinary care, husbandry data, locomotor behaviors, and diets are recorded by researchers and staff. However, these data are disaggregated, making it difficult to explore. The DLC Data Team started by generating microCT scans of the osteology and frozen cadaver collection to make morphological data available on MorphoSource. Preserved specimens were rehoused and inventoried. Now we are using DLC-developed REDCap database management tools to network scans with life-history records, building a database that researchers can use to explore questions such as individual variation in tooth wear, osteological signatures of different pathologies, and individual biomechanical performance. The REDCap database is also used to store fossil metadata like field notes and specimen preparation records. Our goal is to make these database tools available to other living colonies and natural history collections, so life-history data can be shared and standardized across institutions. This effort – in collaboration with the ZooMu network – will ultimately make life histories accessible to researchers – including paleontologists exploring the fossil record.more » « less
-
Saw-scaled vipers (genus Echis) are small (up to 58 cm snout-to-vent length), venomous, eastern hemisphere snakes of the subfamily Viperinae. They are distributed across northern Africa, the Arabian Peninsula, and southwestern Asia. This group has been separated into four species complexes and twelve proposed species, however the true diversity within these groups is unclear even given numerous studies on this genus. This is partly due to uneven geographic sampling of specimens and tissue samples, overlapping distributions, and historically difficult to access species’ ranges making this genus difficult to research. Furthermore, previous studies have not used objective species delimitation approaches with either molecular or morphological data. Using recently collected tissue samples, we generate cytochrome b sequences for 24 specimens and combine these with sequences available on GenBank in order to create a time-calibrated phylogeny and estimate species level diversity using single locus species delimitation methods. We couple this with morphological analysis of specimens from the California Academy of Sciences and UC Berkeley Museum of Vertebrate Zoology collections, in order to determine if these genetically delimited species are morphologically diverged. These data can further aid in identifying specimens to species in this genus, as was demonstrated by classifying individuals to species within the Academy’s collection.more » « less
-
An accurate representation of species diversity is critical in primatology; most of the questions in evolutionary biology, ecology, and conservation hinge on species as a fundamental unit of analysis. Galagos are among the least-known primates. Because of their cryptic morphology, broad distribution, and sampling challenges arising from elusive habits and political instability, substantial knowledge gaps about their taxonomy, evolutionary history, and biogeography remain. Despite these limitations, recent research that integrated field surveys, acoustic, morphological, and genetic analyses helped us to better understand the taxonomic diversity of this primate group. In this paper, we (1) review the current status of galagid taxonomy; (2) synthesize our current understanding of their phylogenetics, origins, and biogeography; and (3) explore current and future approaches to elucidate galagid cryptic species diversity. The onset of galago systematics dates back to the early 19th century, with taxonomic descriptions following natural history expeditions and comparative anatomy studies. Although morphology has historically dominated systematic research on galagos, the coupling of acoustic analyses with genetic data has revolutionized the field. Taxonomic rearrangements include the discovery of new species in the wild (e.g., Galagoides kumbirensis) and the description of a new genus (Paragalago). Technological advances have allowed the collection of acoustic data in remote areas, and molecular techniques have the potential to help researchers fill important geographic gaps. Improving the resolution of galago species diversity also has implications for the conservation of wild populations, as a better understanding of species boundaries and ranges can aid in the implementation of conservation strategies.more » « less
An official website of the United States government
