skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Rearrangement of a Ge( ii ) aryloxide to yield a new Ge( ii ) oxo-cluster [Ge 6 (μ 3 -O) 4 (μ 2 -OC 6 H 2 -2,4,6-Cy 3 ) 4 ](NH 3 ) 0.5 : main group aryloxides of Ge( ii ), Sn( ii ), and Pb( ii ) [M(OC 6 H 2 -2,4,6-Cy 3 ) 2 ] 2 (Cy = cyclohexyl)
Spontaneous Ge6O8cluster formation under ambient conditions using dispersion enhanced aryloxo ligands.  more » « less
Award ID(s):
2152760
PAR ID:
10502339
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
Royal Society of Chemistry
Date Published:
Journal Name:
Dalton Transactions
Volume:
52
Issue:
28
ISSN:
1477-9226
Page Range / eLocation ID:
9582 to 9589
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract During the search for transition metal‐free alkyne hydrogenation catalysts, two new ternary Ca−Ga−Ge phases, Ca2Ga4Ge6(Cmc21, a=4.1600(10) Å, b=23.283(5) Å, c=10.789(3) Å) and Ca3Ga4Ge6(C2/m, a=24.063(2) Å, b=4.1987(4) Å, c=10.9794(9) Å, β=91.409(4)°), were discovered. These compounds are isostructural to the previously established Yb2Ga4Ge6and Yb3Ga4Ge6analogues, and according to Zintl‐Klemm counting rules, consist of anionic [Ga4Ge6]4−and [Ga4Ge6]6−frameworks in which every Ga and Ge atom would have a formal octet with no Ga−Ga or Ga−Ge π‐bonding. These compounds are metallic, based on temperature dependent electrical resistivity and thermopower measurements for Ca3Ga4Ge6, along with density functional theory calculations for both phases. Unlike the highly active 13‐layer trigonal CaGaGe phase, these new compounds exhibit minimal activity in the semi/full alkyne hydrogenation of phenylacetylene, which is consistent with previous observations that the lack of a formal octet for framework atoms is essential for catalysis in these Zintl‐Klemm compounds. 
    more » « less
  2. Abstract Single crystals of U2Mn3Ge and U2Fe3Ge with a Kagome lattice structure were synthesized using a high-temperature self-flux crystal growth method. The physical properties of these crystals were characterized through measurements of resistivity, magnetism, and specific heat. U2Fe3Ge exhibits ferromagnetic ground state and anomalous Hall effect, and U2Mn3Ge demonstrates a complex magnetic structure. Both compounds exhibit large Sommerfeld coefficient, indicating coexistence of heavy Fermion behaviour with magnetism. Our results suggest that this U2TM3Ge (TM = Mn, Fe, Co) family is a promising platform to investigate the interplay of magnetism, Kondo physics and the Kagome lattice. 
    more » « less
  3. Alcoholysis of (C5H4SiMe)3Ln results in bimetallic complexes with unexpected decreases in Ln⋯Ln distances as bridging alkoxides become bulkier. These complexes were characterized by DOSY NMR, CV, DPV, and a LaIIspecies was observed by EPR. 
    more » « less
  4. Reported is the synthesis of a new polar intermetallic phase, Ca4CdIn2Ge4, crystals of which can be readily obtained employing the In‐flux method. The structure and the chemical composition of the new compound are established based on single‐crystal X‐Ray diffraction and energy‐dispersive X‐Ray spectroscopy data. Ca4CdIn2Ge4crystallizes in a monoclinic crystal system with the space groupC2/m(no. 12) with lattice parametersa = 16.7383(12) Å,b = 4.4235(3) Å,c = 7.4322(5) Å, andβ = 106.560(1)°. The structure can formally be classified as a variant of the Mg5Si6structure type (Pearson symbolmS22). Considering the InGe and CdGe interactions as mostly covalent, the polyanionic substructure can be rationalized as consisting of ribbons of edge‐shared [InGe4] tetrahedra connected by Ge2dimers and bridged by Cd atoms in nearly square‐planar environment. Chemical bonding analysis based on TB‐LMTO‐ASA calculations affirms the notion for covalent character of the GeGe bonding with the dimers. The calculations also show that the bonding in the tetrahedra is more covalent in character than the bonding in square‐planar fragments, with the CaGe interactions being the least covalent among all interactions, though not exactly ionic. 
    more » « less
  5. Summary Grasses are exceptionally productive, yet their hydraulic adaptation is paradoxical. Among C3grasses, a high photosynthetic rate (Aarea) may depend on higher vein density (Dv) and hydraulic conductance (Kleaf). However, the higherDvof C4grasses suggests a hydraulic surplus, given their reduced need for highKleafresulting from lower stomatal conductance (gs).Combining hydraulic and photosynthetic physiological data for diverse common garden C3and C4species with data for 332 species from the published literature, and mechanistic modeling, we validated a framework for linkages of photosynthesis with hydraulic transport, anatomy, and adaptation to aridity.C3and C4grasses had similarKleafin our common garden, but C4grasses had higherKleafthan C3species in our meta‐analysis. Variation inKleafdepended on outside‐xylem pathways. C4grasses have highKleaf : gs, which modeling shows is essential to achieve their photosynthetic advantage.Across C3grasses, higherAareawas associated with higherKleaf, and adaptation to aridity, whereas for C4species, adaptation to aridity was associated with higherKleaf : gs. These associations are consistent with adaptation for stress avoidance.Hydraulic traits are a critical element of evolutionary and ecological success in C3and C4grasses and are crucial avenues for crop design and ecological forecasting. 
    more » « less