skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: “There is no reason anybody should be using 1D anymore”: Design and Evaluation of 2D Jupyter Notebooks
Current computational notebooks, such as Jupyter, are a popular tool for data science and analysis. However, they use a 1D list structure for cells that introduces and exacerbates user issues, such as messiness, tedious navigation, inefficient use of large screen space, performance of non-linear analyses, and presentation of non-linear narratives. To ameliorate these issues, we designed a prototype extension for Jupyter Notebooks that enables 2D organization of computational notebook cells into multiple columns. In this paper, we present two evaluative studies to determine whether such “2D computational notebooks” provide advantages over the current computational notebook structure. From these studies, we found empirical evidence that our multi-olumn 2D computational notebooks provide enhanced efficiency and usability. We also gathered design feedback which may inform future works. Overall, the prototype was positively received, with some users expressing a clear preference for 2D computational notebooks even at this early stage of development.  more » « less
Award ID(s):
2003387
PAR ID:
10502365
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
https://openreview.net/forum?id=Gkogn48LeI
Date Published:
Journal Name:
Graphics Interface 2023
Subject(s) / Keyword(s):
Human-centered computing—Human Computer Interaction (HCI) Human-centered computing—Visualization
Format(s):
Medium: X
Location:
Victoria, BC, Canada
Sponsoring Org:
National Science Foundation
More Like this
  1. Current computational notebooks, such as Jupyter, are a popular tool for data science and analysis. However, they use a 1D list structure for cells that introduces and exacerbates user issues, such as messiness, tedious navigation, inefficient use of large screen space, performance of non-linear analyses, and presentation of non-linear narratives. To ameliorate these issues, we designed a prototype extension for Jupyter Notebooks that enables 2D organization of computational notebook cells into multiple columns. In this paper, we present two evaluative studies to determine whether such “2D computational notebooks” provide advantages over the current computational notebook structure. From these studies, we found empirical evidence that our multi-olumn 2D computational notebooks provide enhanced efficiency and usability. We also gathered design feedback which may inform future works. Overall, the prototype was positively received, with some users expressing a clear preference for 2D computational notebooks even at this early stage of development. 
    more » « less
  2. Current computational notebooks, such as Jupyter, are a popular tool for data science and analysis. However, they use a 1D list structure for cells that introduces and exacerbates user issues, such as messiness, tedious navigation, inefficient use of large screen space, performance of non-linear analyses, and presentation of non-linear narratives. To ameliorate these issues, we designed a prototype extension for Jupyter Notebooks that enables 2D organization of computational notebook cells into multiple columns. In this paper, we present two evaluative studies to determine whether such “2D computational notebooks” provide advantages over the current computational notebook structure. From these studies, we found empirical evidence that our multi-olumn 2D computational notebooks provide enhanced efficiency and usability. We also gathered design feedback which may inform future works. Overall, the prototype was positively received, with some users expressing a clear preference for 2D computational notebooks even at this early stage of development. 
    more » « less
  3. Current computational notebooks, such as Jupyter, are a popular tool for data science and analysis. However, they use a 1D list structure for cells that introduces and exacerbates user issues, such as messiness, tedious navigation, inefficient use of large screen space, performance of non-linear analyses, and presentation of non-linear narratives. To ameliorate these issues, we designed a prototype extension for Jupyter Notebooks that enables 2D organization of computational notebook cells into multiple columns. In this paper, we present two evaluative studies to determine whether such “2D computational notebooks” provide advantages over the current computational notebook structure. From these studies, we found empirical evidence that our multi-olumn 2D computational notebooks provide enhanced efficiency and usability. We also gathered design feedback which may inform future works. Overall, the prototype was positively received, with some users expressing a clear preference for 2D computational notebooks even at this early stage of development. 
    more » « less
  4. Representing branching and comparative analyses in computational notebooks is complicated by the 1-dimensional (1D), top-down list arrangement of cells. Given the ubiquity of these and other non-linear features, their importance to analysis and narrative, and the struggles current 1D computational notebooks have, enabling organization of computational notebook cells in 2 dimensions (2D) may prove valuable. We investigated whether and how users would organize cells in such a “2D Computational Notebook” through a user study and gathered feedback from participants through a follow-up survey and optional interviews. Through the user study, we found 3 main design patterns for arranging notebook cells in 2D: Linear, Multi-Column, and Workboard. Through the survey and interviews, we found that users see potential value in 2D Computational Notebooks for branching and comparative analyses, but the expansion from 1D to 2D may necessitate additional navigational and organizational aids. 
    more » « less
  5. Computational notebooks are intended to prioritize the needs of scientists, but little is known about how scientists interact with notebooks, what requirements drive scientists’ software development processes, or what tactics scientists use to meet their requirements. We conducted an observational study of 20 scientists using Jupyter notebooks for their day-to-day tasks, finding that scientists prioritize different quality attributes depending on their goals. A qualitative analysis of their usage shows (1) a collection of goals scientists pursue with Jupyter notebooks, (2) a set of quality attributes that scientists value when they write software, and (3) tactics that scientists leverage to promote quality. In addition, we identify ways scientists incorporated AI tools into their notebook work. From our observations, we derive design recommendations for improving computational notebooks and future programming systems for scientists. Key opportunities pertain to helping scientists create and manage state, dependencies, and abstractions in their software, enabling more effective reuse of clearly-defined components. 
    more » « less