skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Friday, September 13 until 2:00 AM ET on Saturday, September 14 due to maintenance. We apologize for the inconvenience.


This content will become publicly available on February 1, 2025

Title: Subsurface Imaging Using Interferometry of Distributed Acoustic Sensing Ambient Noise Measurement along a Dark Fiber Line: A Case Study in Downtown Reno, Nevada
ABSTRACT

Distributed acoustic sensing (DAS) technology is an emerging field of seismic sensing that enables recording ambient noise seismic data along the entire length of a fiber-optic cable at meter-scale resolution. Such a dense spatial resolution of recordings over long distances has not been possible using traditional methods because of limited hardware resources and logistical concerns in an urban environment. The low spatial resolution of traditional passive seismic acquisition techniques has limited the accuracy of the previously generated velocity profiles in many important urban regions, including the Reno-area basin, to the top 100 m of the underlying subsurface. Applying the method of seismic interferometry to ambient noise strain rate data obtained from a dark-fiber cable allows for generating noise cross correlations, which can be used to infer shallow and deep subsurface properties and basin geometry. We gathered DAS ambient noise seismic data for this study using a 12 km portion of a dark-fiber line in Reno, Nevada. We used gathered data to generate and invert dispersion curves to estimate the near-surface shear-wave velocity structure. Comparing the generated velocity profiles with previous regional studies shows good agreement in determining the average depth to bedrock and velocity variations in the analyzed domain. A synthetic experiment is also performed to verify the proposed framework further and better understand the effect of the infrastructural cover along the cable. The results obtained from this research provide insight into the application of DAS using dark-fiber lines in subsurface characterization in urban environments. It also discusses the potential effects of the conduit that covers such permanent fiber installations on the produced inversion results.

 
more » « less
Award ID(s):
1832109 2243962 2243961 2243963
NSF-PAR ID:
10502387
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
Seismological Society of America
Date Published:
Journal Name:
Bulletin of the Seismological Society of America
ISSN:
0037-1106
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Geotechnical characterization of marine sediments remains an outstanding challenge for offshore energy development, including foundation design and site selection of wind turbines and offshore platforms. We demonstrate that passive distributed acoustic sensing (DAS) surveys offer a new solution for shallow offshore geotechnical investigation where seafloor power or communications cables with fiber-optic links are available. We analyze Scholte waves recorded by DAS on a 42 km power cable in the Belgian offshore area of the southern North Sea. Ambient noise crosscorrelations converge acceptably with just over one hour of data, permitting multimodal Scholte wave dispersion measurement and shear-wave velocity inversion along the cable. We identify anomalous off-axis Scholte wave arrivals in noise crosscorrelations at high frequencies. Using a simple passive source imaging approach, we associate these arrivals with individual wind turbines, which suggests they are generated by structural vibrations. While many technological barriers must be overcome before ocean-bottom DAS can be applied to global seismic monitoring in the deep oceans, high-frequency passive surveys for high-resolution geotechnical characterization and monitoring in coastal regions are easily achievable today. 
    more » « less
  2. Abstract

    This article documents a comprehensive subsurface imaging experiment using seismic waves in a well-studied outdoor laboratory at Newberry, Florida, which is known for significant spatial variability, karstic voids, and underground anomalies. The experiment used approximately two kilometers of distributed acoustic sensing (DAS) fiber-optic cable, forming a dense 2D array of 1920 horizontal-component channels, and a 2D array of 144 SmartSolo three-component nodal seismometers, to sense active-source and passive-wavefield seismic waves. The active-source data were generated using a powerful, triaxial vibroseis shaker truck (T-Rex) and impact sources (accelerated weight drop and an eight-pound sledgehammer) that were simultaneously recorded by both the DAS and nodal seismometers. The vibroseis truck was used to excite the ground in three directions (two horizontal and one vertical) at 260 locations inside and outside the instrumented array, whereas the impact sources were used at 268 locations within the instrumented array. The passive-wavefield data recorded using the nodal seismometers comprised 48 hr of ambient noise collected over a period of four days in four 12-hour time blocks, whereas the passive wavefield data collected using DAS consisted of four hours of ambient noise recordings. This article aims to provide a comprehensive overview of the testing site, experiment layout, the DAS and nodal seismometer acquisition parameters, and implemented raw data processing steps. Although potential use cases, such as surface-wave testing, full-waveform inversion, and ambient noise tomography, are discussed relative to example data, the focus of this article is on documenting this unique data set and presenting its initial data quality rather than on generating subsurface imaging results. The raw and processed data, along with detailed documentation of the experiment and Python tools to aid in visualizing the DAS data set, have been made publicly available.

     
    more » « less
  3. SUMMARY

    The Granada Basin in southeast Spain is an area of moderate seismicity. Yet, it hosts some of the highest seismic hazards in the Iberian Peninsula due to the presence of shallow soft sediments amplifying local ground motion. In urban areas, seismic measurements often suffer from sparse instrumentation. An enticing alternative to conventional seismometers is the distributed acoustic sensing (DAS) technology that can convert fibre-optic telecommunication cables into dense arrays of seismic sensors. In this study, we perform a shallow structure analysis using the ambient seismic field interferometry method. We conduct a DAS array field test in the city of Granada on the 26 and 27 August 2020, using a telecommunication fibre. In addition to the existing limitations of using DAS with unknown fibre-ground coupling conditions, the complex geometry of the fibre and limited data recording duration further challenge the extraction of surface-wave information from the ambient seismic field in such an urban environment. Therefore, we develop a processing scheme that incorporates a frequency–wavenumber (f−k) filter to enhance the quality of the virtual shot gathers and related multimode dispersion images. We are able to use this data set to generate several shear-wave velocity (VS) profiles for different sections of the cable. The shallow VS structure shows a good agreement with different geological conditions of soil deposits. This study demonstrates that DAS could provide insights into soil characterization and seismic microzonation in urban areas. In addition, the results contribute to a better understanding of local site response to ground motion.

     
    more » « less
  4. Distributed fiber-optic sensing technology coupled to existing subsea cables (dark fiber) allows observation of ocean and solid earth phenomena. We used an optical fiber from the cable supporting the Monterey Accelerated Research System during a 4-day maintenance period with a distributed acoustic sensing (DAS) instrument operating onshore, creating a ~10,000-component, 20-kilometer-long seismic array. Recordings of a minor earthquake wavefield identified multiple submarine fault zones. Ambient noise was dominated by shoaling ocean surface waves but also contained observations of in situ secondary microseism generation, post–low-tide bores, storm-induced sediment transport, infragravity waves, and breaking internal waves. DAS amplitudes in the microseism band tracked sea-state dynamics during a storm cycle in the northern Pacific. These observations highlight this method’s potential for marine geophysics.

     
    more » « less
  5. Seismic imaging and monitoring of the near-surface structure are crucial for the sustainable development of urban areas. However, standard seismic surveys based on cabled or autonomous geophone arrays are expensive and hard to adapt to noisy metropolitan environments. Distributed acoustic sensing (DAS) with pre-existing telecom fiber optic cables, together with seismic ambient noise interferometry, have the potential to fulfill this gap. However, a detailed noise wavefield characterization is needed before retrievingcoherent waves from chaotic noise sources. We analyze local seismic ambient noise by tracking five-month changes in signal-to-noise ratio (SNR) of Rayleigh surface wave estimated from traffic noise recorded by DAS along the straight university campus busy road. We apply the seismic interferometry method to the 800 m long part of the Penn State Fiber-Optic For Environment Sensing (FORESEE) array. We evaluate the 160 virtual shot gathers (VSGs) by determining the SNR using the slant-stack technique. We observe strong SNR variations in time and space. We notice higher SNR for virtual source points close to road obstacles. The spatial noise distribution confirms that noise energy focuses mainly on bumps and utility holes. We also see the destructive impact of precipitation, pedestrian traffic, and traffic along main intersections on VSGs. A similar processing workflow can be applied to various straight roadside fiber optic arrays in metropolitan areas.

     
    more » « less