skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Cross-modality mapping using image varifolds to align tissue-scale atlases to molecular-scale measures with application to 2D brain sections
Abstract This paper explicates a solution to building correspondences between molecular-scale transcriptomics and tissue-scale atlases. This problem arises in atlas construction and cross-specimen/technology alignment where specimens per emerging technology remain sparse and conventional image representations cannot efficiently model the high dimensions from subcellular detection of thousands of genes. We address these challenges by representing spatial transcriptomics data as generalized functions encoding position and high-dimensional feature (gene, cell type) identity. We map onto low-dimensional atlas ontologies by modeling regions as homogeneous random fields with unknown transcriptomic feature distribution. We solve simultaneously for the minimizing geodesic diffeomorphism of coordinates through LDDMM and for these latent feature densities. We map tissue-scale mouse brain atlases to gene-based and cell-based transcriptomics data from MERFISH and BARseq technologies and to histopathology and cross-species atlases to illustrate integration of diverse molecular and cellular datasets into a single coordinate system as a means of comparison and further atlas construction.  more » « less
Award ID(s):
2309683 2047611
PAR ID:
10502444
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
Nature Publishing Group
Date Published:
Journal Name:
Nature Communications
Volume:
15
Issue:
1
ISSN:
2041-1723
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. BackgroundUnderstanding genetic underpinnings of immune-mediated inflammatory diseases is crucial to improve treatments. Single-cell RNA sequencing (scRNA-seq) identifies cell states expanded in disease, but often overlooks genetic causality due to cost and small genotyping cohorts. Conversely, large genome-wide association studies (GWAS) are commonly accessible. MethodsWe present a 3-step robust benchmarking analysis of integrating GWAS and scRNA-seq to identify genetically relevant cell states and genes in inflammatory diseases. First, we applied and compared the results of three recent algorithms, based on pathways (scGWAS), single-cell disease scores (scDRS), or both (scPagwas), according to accuracy/sensitivity and interpretability. While previous studies focused on coarse cell types, we used disease-specific, fine-grained single-cell atlases (183,742 and 228,211 cells) and GWAS data (Ns of 97,173 and 45,975) for rheumatoid arthritis (RA) and ulcerative colitis (UC). Second, given the lack of scRNA-seq for many diseases with GWAS, we further tested the tools’ resolution limits by differentiating between similar diseases with only one fine-grained scRNA-seq atlas. Lastly, we provide a novel evaluation of noncoding SNP incorporation methods by testing which enabled the highest sensitivity/accuracy of known cell-state calls. ResultsWe first found that single-cell based tools scDRS and scPagwas called superior numbers of supported cell states that were overlooked by scGWAS. While scGWAS and scPagwas were advantageous for gene exploration, scDRS effectively accounted for batch effect and captured cellular heterogeneity of disease-relevance without single-cell genotyping. For noncoding SNP integration, we found a key trade-off between statistical power and confidence with positional (e.g. MAGMA) and non-positional approaches (e.g. chromatin-interaction, eQTL). Even when directly incorporating noncoding SNPs through 5’ scRNA-seq measures of regulatory elements, non disease-specific atlases gave misleading results by not containing disease-tissue specific transcriptomic patterns. Despite this criticality of tissue-specific scRNA-seq, we showed that scDRS enabled deconvolution of two similar diseases with a single fine-grained scRNA-seq atlas and separate GWAS. Indeed, we identified supported and novel genetic-phenotype linkages separating RA and ankylosing spondylitis, and UC and crohn’s disease. Overall, while noting evolving single-cell technologies, our study provides key findings for integrating expanding fine-grained scRNA-seq, GWAS, and noncoding SNP resources to unravel the complexities of inflammatory diseases. 
    more » « less
  2. The metabolic heterogeneity and metabolic interplay between cells are known as significant contributors to disease treatment resistance. However, with the lack of a mature high-throughput single-cell metabolomics technology, we are yet to establish systematic understanding of the intra-tissue metabolic heterogeneity and cooperative mechanisms. To mitigate this knowledge gap, we developed a novel computational method, namely, single-cell flux estimation analysis (scFEA), to infer the cell-wise fluxome from single-cell RNA-sequencing (scRNA-seq) data. scFEA is empowered by a systematically reconstructed human metabolic map as a factor graph, a novel probabilistic model to leverage the flux balance constraints on scRNA-seq data, and a novel graph neural network–based optimization solver. The intricate information cascade from transcriptome to metabolome was captured using multilayer neural networks to capitulate the nonlinear dependency between enzymatic gene expressions and reaction rates. We experimentally validated scFEA by generating an scRNA-seq data set with matched metabolomics data on cells of perturbed oxygen and genetic conditions. Application of scFEA on this data set showed the consistency between predicted flux and the observed variation of metabolite abundance in the matched metabolomics data. We also applied scFEA on five publicly available scRNA-seq and spatial transcriptomics data sets and identified context- and cell group–specific metabolic variations. The cell-wise fluxome predicted by scFEA empowers a series of downstream analyses including identification of metabolic modules or cell groups that share common metabolic variations, sensitivity evaluation of enzymes with regards to their impact on the whole metabolic flux, and inference of cell–tissue and cell–cell metabolic communications. 
    more » « less
  3. Single-cell RNA sequencing (scRNA-seq) provides expression profiles of individual cells but fails to preserve crucial spatial information. On the other hand, Spatial Transcrip- tomics technologies are able to analyze specific regions within tissue sections, but lack of the capability to examine in single-cell resolution. To overcome these issues, we present Single-cell and Spatial transcriptomics Alignment (SSA), a novel technique that employs an optimal transport algorithm to assign individual cells from a scRNA-seq atlas to their spa- tial locations in actual tissue based on their expression profiles. SSA has demonstrated su- perior performance compared to existing methods SpaOTsc, Tangram, Seurat and DistMap using 10 semi-simulated datasets generated from a high-resolution spatial transcriptomics human breast cancer dataset with 100,064 cells. This advancement provides a refined tool for researchers to delve deeper in understanding of the relationship between cellular spatial organization and gene expression. 
    more » « less
  4. Abstract The Soybean Gene Atlas project provides a comprehensive map for understanding gene expression patterns in major soybean tissues from flower, root, leaf, nodule, seed, and shoot and stem. The RNA‐Seq data generated in the project serve as a valuable resource for discovering tissue‐specific transcriptome behavior of soybean genes in different tissues. We developed a computational pipeline for Soybean context‐specific network (SoyCSN) inference with a suite of prediction tools to analyze, annotate, retrieve, and visualize soybean context‐specific networks at both transcriptome and interactome levels. BicMix and Cross‐Conditions Cluster Detection algorithms were applied to detect modules based on co‐expression relationships across all the tissues. Soybean context‐specific interactomes were predicted by combining soybean tissue gene expression and protein–protein interaction data. Functional analyses of these predicted networks provide insights into soybean tissue specificities. For example, under symbiotic, nitrogen‐fixing conditions, the constructed soybean leaf network highlights the connection between the photosynthesis function and rhizobium–legume symbiosis. SoyCSN data and all its results are publicly available via an interactive web service within the Soybean Knowledge Base (SoyKB) athttp://soykb.org/SoyCSN. SoyCSN provides a useful web‐based access for exploring context specificities systematically in gene regulatory mechanisms and gene relationships for soybean researchers and molecular breeders. 
    more » « less
  5. Abstract MotivationSpatial transcriptomics technologies, which generate a spatial map of gene activity, can deepen the understanding of tissue architecture and its molecular underpinnings in health and disease. However, the high cost makes these technologies difficult to use in practice. Histological images co-registered with targeted tissues are more affordable and routinely generated in many research and clinical studies. Hence, predicting spatial gene expression from the morphological clues embedded in tissue histological images provides a scalable alternative approach to decoding tissue complexity. ResultsHere, we present a graph neural network based framework to predict the spatial expression of highly expressed genes from tissue histological images. Extensive experiments on two separate breast cancer data cohorts demonstrate that our method improves the prediction performance compared to the state-of-the-art, and that our model can be used to better delineate spatial domains of biological interest. Availability and implementationhttps://github.com/song0309/asGNN/ 
    more » « less