Abstract Spatial transcriptomics (ST) technologies measure gene expression at thousands of locations within a two-dimensional tissue slice, enabling the study of spatial gene expression patterns. Spatial variation in gene expression is characterized byspatial gradients, or the collection of vector fields describing the direction and magnitude in which the expression of each gene increases. However, the few existing methods that learn spatial gradients from ST data either make restrictive and unrealistic assumptions on the structure of the spatial gradients or do not accurately model discrete transcript locations/counts. We introduce SLOPER (for Score-based Learning Of Poisson-modeled Expression Rates), a generative model for learning spatial gradients (vector fields) from ST data. SLOPER models the spatial distribution of mRNA transcripts with aninhomogeneous Poisson point process (IPPP)and usesscore matchingto learn spatial gradients for each gene. SLOPER utilizes the learned spatial gradients in a novel diffusion-based sampling approach to enhance the spatial coherence and specificity of the observed gene expression measurements. We demonstrate that the spatial gradients and enhanced gene expression representations learned by SLOPER leads to more accurate identification of tissue organization, spatially variable gene modules, and continuous axes of spatial variation (isodepth) compared to existing methods. Software availabilitySLOPER is available athttps://github.com/chitra-lab/SLOPER.
more »
« less
Predicting spatially resolved gene expression via tissue morphology using adaptive spatial GNNs
Abstract MotivationSpatial transcriptomics technologies, which generate a spatial map of gene activity, can deepen the understanding of tissue architecture and its molecular underpinnings in health and disease. However, the high cost makes these technologies difficult to use in practice. Histological images co-registered with targeted tissues are more affordable and routinely generated in many research and clinical studies. Hence, predicting spatial gene expression from the morphological clues embedded in tissue histological images provides a scalable alternative approach to decoding tissue complexity. ResultsHere, we present a graph neural network based framework to predict the spatial expression of highly expressed genes from tissue histological images. Extensive experiments on two separate breast cancer data cohorts demonstrate that our method improves the prediction performance compared to the state-of-the-art, and that our model can be used to better delineate spatial domains of biological interest. Availability and implementationhttps://github.com/song0309/asGNN/
more »
« less
- Award ID(s):
- 2042159
- PAR ID:
- 10540061
- Publisher / Repository:
- Oxford University Press
- Date Published:
- Journal Name:
- Bioinformatics
- Volume:
- 40
- Issue:
- Supplement_2
- ISSN:
- 1367-4803
- Format(s):
- Medium: X Size: p. ii111-ii119
- Size(s):
- p. ii111-ii119
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Histopathological images are used to characterize complex phenotypes such as tumor stage. Our goal is to associate features of stained tissue images with high-dimensional genomic markers. We use convolutional autoencoders and sparse canonical correlation analysis (CCA) on paired histological images and bulk gene expression to identify subsets of genes whose expression levels in a tissue sample correlate with subsets of morphological features from the corresponding sample image. We apply our approach, ImageCCA, to two TCGA data sets, and find gene sets associated with the structure of the extracellular matrix and cell wall infrastructure, implicating uncharacterized genes in extracellular processes. We find sets of genes associated with specific cell types, including neuronal cells and cells of the immune system. We apply ImageCCA to the GTEx v6 data, and find image features that capture population variation in thyroid and in colon tissues associated with genetic variants (image morphology QTLs, or imQTLs), suggesting that genetic variation regulates population variation in tissue morphological traits.more » « less
-
Abstract Tissue development and disease lead to changes in cellular organization, nuclear morphology, and gene expression, which can be jointly measured by spatial transcriptomic technologies. However, methods for jointly analyzing the different spatial data modalities in 3D are still lacking. We present a computational framework to integrate Spatial Transcriptomic data using over-parameterized graph-based Autoencoders with Chromatin Imaging data (STACI) to identify molecular and functional alterations in tissues. STACI incorporates multiple modalities in a single representation for downstream tasks, enables the prediction of spatial transcriptomic data from nuclear images in unseen tissue sections, and provides built-in batch correction of gene expression and tissue morphology through over-parameterization. We apply STACI to analyze the spatio-temporal progression of Alzheimer’s disease and identify the associated nuclear morphometric and coupled gene expression features. Collectively, we demonstrate the importance of characterizing disease progression by integrating multiple data modalities and its potential for the discovery of disease biomarkers.more » « less
-
Abstract Spatial transcriptomics technologies enable high-throughput quantification of gene expression at specific locations across tissue sections, facilitating insights into the spatial organization of biological processes. However, high costs associated with these technologies have motivated the development of deep learning methods to predict spatial gene expression from inexpensive hematoxylin and eosin-stained histology images. While most efforts have focused on modifying model architectures to boost predictive performance, the influence of training data quality remains largely unexplored. Here, we investigate how variation in molecular and image data quality stemming from differences in imaging (Xenium) versus sequencing (Visium) spatial transcriptomics technologies impact deep learning-based gene expression prediction from histology images. To delineate the aspects of data quality that impact predictive performance, we conductedin silicoablation experiments, which showed that increased sparsity and noise in molecular data degraded predictive performance, whilein silicorescue experiments via imputation provided only limited improvements that failed to generalize beyond the test set. Likewise, reduced image resolution can degrade predictive performance and further impacts model interpretability. Overall, our results underscore how improving data quality offers an orthogonal strategy to tuning model architecture in enhancing predictive modeling using spatial transcriptomics and emphasize the need for careful consideration of technological limitations that directly impact data quality when developing predictive methodologies.more » « less
-
Abstract Recent technologies such asspatial transcriptomics, enable the measurement of gene expressions at the single-cell level along with the spatial locations of these cells in the tissue. Spatial clustering of the cells provides valuable insights into the understanding of the functional organization of the tissue. However, most such clustering methods involve some dimension reduction that leads to a loss of the inherent dependency structure among genes at any spatial location in the tissue. This destroys valuable insights of gene co-expression patterns apart from possibly impacting spatial clustering performance. In spatial transcriptomics, the matrix-variate gene expression data, along with spatial coordinates of the single cells, provides information on both gene expression dependencies and cell spatial dependencies through its row and column covariances. In this work, we propose a joint Bayesian approach to simultaneously estimate these gene and spatial cell correlations. These estimates provide data summaries for downstream analyses. We illustrate our method with simulations and analysis of several real spatial transcriptomic datasets. Our work elucidates gene co-expression networks as well as clear spatial clustering patterns of the cells. Furthermore, our analysis reveals that downstream spatial-differential analysis may aid in the discovery of unknown cell types from known marker genes.more » « less
An official website of the United States government
