skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Polyheptenamer: A chemically recyclable polyolefin enabled by the low strain of seven‐membered cycloheptene
Abstract Low‐strain cyclic olefin monomers, including five‐membered, six‐membered, eight‐membered, and macrocyclic rings, have been recently exploited for the synthesis of depolymerizable polyolefins via ring‐opening metathesis polymerization (ROMP). Such polyolefins can undergo ring‐closing metathesis depolymerization (RCMD) to regenerate their original monomers. Nevertheless, the depolymerization behavior of polyolefins prepared by ROMP of seven‐membered cyclic olefins, an important class of low‐strain rings, still remains unexplored. In this study, we demonstrate the chemical recycling of polyheptenamers to cycloheptene under standard RCMD conditions. Highly efficient depolymerization of polyheptenamer was enabled by Grubbs' second‐generation catalyst in toluene. It was observed that the monomer yields increased when the depolymerization temperature increased and the starting polymer concentration was reduced. A near‐quantitative monomer regeneration (>96%) was achieved within 1 h under dilute conditions (20 mM of olefins) at 60°C. Moreover, polyheptenamer exhibited a decomposition temperature above 430°C, highlighting its potential as a new class of thermally stable and chemically recyclable polymer materials.  more » « less
Award ID(s):
2316842
PAR ID:
10502447
Author(s) / Creator(s):
 ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Journal of Polymer Science
ISSN:
2642-4150
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The current insufficient recycling of commodity polymer waste has resulted in pressing environmental and human health issues in our modern society. In the quest for next-generation polymer materials, chemists have recently shifted their attention to the design of chemically recyclable polymers that can undergo depolymerization to regenerate monomers under mild conditions. During the past decade, ring-closing metathesis reactions have been demonstrated to be a robust approach for the depolymerization of polyolefins, producing low-strain cyclic alkene products which can be repolymerized back to new batches of polymers. In this review, we aim to highlight the recent advances in chemical recycling of polyolefins enabled by ring-closing metathesis depolymerization (RCMD). A library of depolymerizable polyolefins will be covered based on the ring size of their monomers or depolymerization products, including five-membered, six-membered, eight-membered, and macrocyclic rings. Moreover, current limitations, potential applications, and future opportunities of the RCMD approach will be discussed. It is clear from recent research in this field that RCMD represents a powerful strategy towards closed-loop chemical recycling of novel polyolefin materials. 
    more » « less
  2. Abstract While depolymerizable polymers have been intensely pursued as a potential solution to address the challenges in polymer sustainability, most depolymerization systems are characterized by a low driving force in polymerization, which poses difficulties for accessing diverse functionalities and architectures of polymers. Here, we address this challenge by using a cyclooctene‐based depolymerization system, in which thecis‐to‐transalkene isomerization significantly increases the ring strain energy to enable living ring‐opening metathesis polymerization at monomer concentrations ≥0.025 M. An additionaltrans‐cyclobutane fused at the 5,6‐position of the cyclooctene reduces the ring strain energy of cyclooctene, enabling the corresponding polymers to depolymerize into thecis‐cyclooctene monomers. The use of excess triphenylphosphine was found to be essential to suppress secondary metathesis and depolymerization. The high‐driving‐force living polymerization of thetrans‐cyclobutane fusedtrans‐cyclooctene system holds promise for developing chemically recyclable polymers of a wide variety of polymer architectures. 
    more » « less
  3. Abstract The ring‐opening metathesis polymerization (ROMP) of cyclopropenes using hydrazonium initiators is described. The initiators, which are formed by the condensation of 2,3‐diazabicyclo[2.2.2]octane and an aldehyde, polymerize cyclopropene monomers by a sequence of [3+2] cycloaddition and cycloreversion reactions. This process generates short chain polyolefins (Mn≤9.4 kg mol−1) with relatively low dispersities (Đ≤1.4). The optimized conditions showed efficiency comparable to that achieved with Grubbs’ 2ndgeneration catalyst for the polymerization of 3‐methyl‐3‐phenylcyclopropene. A positive correlation between monomer to initiator ratio and degree of polymerization was revealed through NMR spectroscopy. 
    more » « less
  4. Ring opening metathesis polymerization (ROMP) is widely considered an excellent living polymerization technique that proceeds rapidly under ambient conditions and is highly functional group tolerant when performed in organic solvents. However, achieving the same level of success in aqueous media has proved to be challenging, often requiring an organic co-solvent or a very low pH to obtain fast initiation and high monomer conversion. The ability to efficiently conduct ROMP under neutral pH aqueous conditions would mark an important step towards utilizing aqueous ROMP with acid-sensitive functional groups or within a biological setting. Herein we describe our efforts to optimize ROMP in an aqueous environment under neutral pH conditions. Specifically, we found that the presence of excess chloride in solution as well as relatively small changes in pH near physiological conditions have a profound effect on molecular weight control, polymerization rate and overall monomer conversion. Additionally, we have applied our optimized conditions to polymerize a broad scope of water-soluble monomers and used this methodology to produce nanostructures via ring opening metathesis polymerization induced self-assembly (ROMPISA) under neutral pH aqueous conditions. 
    more » « less
  5. Degradable polymers made via ring-opening metathesis polymerization (ROMP) hold tremendous promise as eco-friendly materials. However, most of the ROMP monomers are derived from petroleum resources, which are typically considered less sustainable compared to biomass. Herein, we present a synthetic strategy to degradable polymers by harnessing alternating ROMP of biomass-based cyclic olefin monomers including exo-oxanorbornenes and cyclic enol ethers. A library of well-defined poly(enol ether)s with modular structures, tunable glass transition temperatures, and controlled molecular weights was achieved, demonstrating the versatility of this approach. Most importantly, the resulting copolymers exhibit high degrees of alternation, rendering their backbones fully degradable under acidic conditions. 
    more » « less