Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Low‐strain cyclic olefin monomers, including five‐membered, six‐membered, eight‐membered, and macrocyclic rings, have been recently exploited for the synthesis of depolymerizable polyolefins via ring‐opening metathesis polymerization (ROMP). Such polyolefins can undergo ring‐closing metathesis depolymerization (RCMD) to regenerate their original monomers. Nevertheless, the depolymerization behavior of polyolefins prepared by ROMP of seven‐membered cyclic olefins, an important class of low‐strain rings, still remains unexplored. In this study, we demonstrate the chemical recycling of polyheptenamers to cycloheptene under standard RCMD conditions. Highly efficient depolymerization of polyheptenamer was enabled by Grubbs' second‐generation catalyst in toluene. It was observed that the monomer yields increased when the depolymerization temperature increased and the starting polymer concentration was reduced. A near‐quantitative monomer regeneration (>96%) was achieved within 1 h under dilute conditions (20 mM of olefins) at 60°C. Moreover, polyheptenamer exhibited a decomposition temperature above 430°C, highlighting its potential as a new class of thermally stable and chemically recyclable polymer materials.more » « less
-
Degradable and functionalizable polyacetals synthesized via ring-opening metathesis copolymerizationDegradable polymers are promising materials for use to reduce plastic waste and advance biomedical applications. However, to meet the demands of specific applications, tailoring the properties of degradable polymers through precise modification of their chemical structures is critical. Herein, we present a new class of degradable and functionalizable polyacetals synthesized by the ring-opening metathesis copolymerization (ROMP) of two commercially available monomers: dimethyl oxanorbornadiene-2,3-dicarboxylate (OND) and 4,7-dihydro-1,3-dioxepin (DXP). The resulting polyacetals are not only acid-degradable but also readily and efficiently functionalizable via thia–Michael addition, yielding degradable polymer materials with various functional groups and tunable thermal properties.more » « lessFree, publicly-accessible full text available June 11, 2026
-
Here we report the design and synthesis of acid-degradable and functionalizable polymers via alternating ring-opening metathesis copolymerization of oxanorbornadiene dicarboxylate and 2,3-dihydrofuran. The resulting polymers can undergo post-polymerization modification through...more » « lessFree, publicly-accessible full text available March 25, 2026
-
Biomass-derived polymer materials are emerging as sustainable and low-carbon footprint alternatives to the current petroleum-based commodity plastics. In the past decade, the ring-opening metathesis polymerization (ROMP) technique has been widely used for the polymerization of cyclic olefin monomers derived from biorenewable resources, giving rise to a diverse set of biobased polymer materials. However, most synthetic biobased polymers made by ROMP are nondegradable because of their all-carbon backbones. Herein, we present a modular synthetic strategy to acid-degradable poly(enol ether)s via ring-opening metathesis copolymerization of biorenewable oxanorbornenes and 3,4-dihydropyran (DHP). 1H NMR analysis reveals that the percentage of DHP units in the resulting copolymers gradually increases as the feed ratio of DHP to oxanorbornene increases. The composition of the copolymers plays a pivotal role in governing their thermal properties. Thermogravimetric analysis shows that an increasing percentage of DHP results in a decrease in the decomposition temperatures, suggesting that the incorporation of enol ether groups in the polymer backbone reduces the thermal stability of the copolymers. Moreover, a wide range of glass transition temperatures (16–165 °C) can be achieved by tuning the copolymer composition and the oxanorbornene structure. Critically, all of the poly(enol ether)s developed in this study are degradable under mildly acidic conditions. A higher incorporation of DHP in the copolymer leads to enhanced degradability, as evidenced by smaller final degradation products. Altogether, this study provides a facile approach for synthesizing biorenewable and degradable polymer materials with highly tunable thermal properties desired for their potential industrial applications.more » « less
-
The current insufficient recycling of commodity polymer waste has resulted in pressing environmental and human health issues in our modern society. In the quest for next-generation polymer materials, chemists have recently shifted their attention to the design of chemically recyclable polymers that can undergo depolymerization to regenerate monomers under mild conditions. During the past decade, ring-closing metathesis reactions have been demonstrated to be a robust approach for the depolymerization of polyolefins, producing low-strain cyclic alkene products which can be repolymerized back to new batches of polymers. In this review, we aim to highlight the recent advances in chemical recycling of polyolefins enabled by ring-closing metathesis depolymerization (RCMD). A library of depolymerizable polyolefins will be covered based on the ring size of their monomers or depolymerization products, including five-membered, six-membered, eight-membered, and macrocyclic rings. Moreover, current limitations, potential applications, and future opportunities of the RCMD approach will be discussed. It is clear from recent research in this field that RCMD represents a powerful strategy towards closed-loop chemical recycling of novel polyolefin materials.more » « less
-
Degradable polymers made via ring-opening metathesis polymerization (ROMP) hold tremendous promise as eco-friendly materials. However, most of the ROMP monomers are derived from petroleum resources, which are typically considered less sustainable compared to biomass. Herein, we present a synthetic strategy to degradable polymers by harnessing alternating ROMP of biomass-based cyclic olefin monomers including exo-oxanorbornenes and cyclic enol ethers. A library of well-defined poly(enol ether)s with modular structures, tunable glass transition temperatures, and controlled molecular weights was achieved, demonstrating the versatility of this approach. Most importantly, the resulting copolymers exhibit high degrees of alternation, rendering their backbones fully degradable under acidic conditions.more » « less