We consider the problem of offline reinforcement learning (RL) -- a well-motivated setting of RL that aims at policy optimization using only historical data. Despite its wide applicability, theoretical understandings of offline RL, such as its optimal sample complexity, remain largely open even in basic settings such as \emph{tabular} Markov Decision Processes (MDPs). In this paper, we propose Off-Policy Double Variance Reduction (OPDVR), a new variance reduction based algorithm for offline RL. Our main result shows that OPDVR provably identifies an ϵ-optimal policy with O˜(H2/dmϵ2) episodes of offline data in the finite-horizon stationary transition setting, where H is the horizon length and dm is the minimal marginal state-action distribution induced by the behavior policy. This improves over the best known upper bound by a factor of H. Moreover, we establish an information-theoretic lower bound of Ω(H2/dmϵ2) which certifies that OPDVR is optimal up to logarithmic factors. Lastly, we show that OPDVR also achieves rate-optimal sample complexity under alternative settings such as the finite-horizon MDPs with non-stationary transitions and the infinite horizon MDPs with discounted rewards.
more »
« less
Estimation of stationary optimal transport plans
Abstract We study optimal transport for stationary stochastic processes taking values in finite spaces. In order to reflect the stationarity of the underlying processes, we restrict attention to stationary couplings, also known as joinings. The resulting optimal joining problem captures differences in the long-run average behavior of the processes of interest. We introduce estimators of both optimal joinings and the optimal joining cost, and establish consistency of the estimators under mild conditions. Furthermore, under stronger mixing assumptions we establish finite-sample error rates for the estimated optimal joining cost that extend the best known results in the iid case. We also extend the consistency and rate analysis to an entropy-penalized version of the optimal joining problem. Finally, we validate our convergence results empirically as well as demonstrate the computational advantage of the entropic problem in a simulation experiment.
more »
« less
- PAR ID:
- 10502448
- Publisher / Repository:
- Oxford University Press
- Date Published:
- Journal Name:
- Information and Inference: A Journal of the IMA
- Volume:
- 13
- Issue:
- 2
- ISSN:
- 2049-8772
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Optimizing the allocation of units into treatment groups can help researchers improve the precision of causal estimators and decrease costs when running factorial experiments. However, existing optimal allocation results typically assume a super-population model and that the outcome data come from a known family of distributions. Instead, we focus on randomization-based causal inference for the finite-population setting, which does not require model specifications for the data or sampling assumptions. We propose exact theoretical solutions for optimal allocation in {2}^{K}factorial experiments under complete randomization with A-, D-, and E-optimality criteria. We then extend this work to factorial designs with block randomization. We also derive results for optimal allocations when using cost-based constraints. To connect our theory to practice, we provide convenient integer-constrained programming solutions using a greedy optimization approach to find integer optimal allocation solutions for both complete and block randomizations. The proposed methods are demonstrated using two real-life factorial experiments conducted by social scientists.more » « less
-
Abstract Cumulative sum (CUSUM) statistics are widely used in the change point inference and identification. For the problem of testing for existence of a change point in an independent sample generated from the mean-shift model, we introduce a Gaussian multiplier bootstrap to calibrate critical values of the CUSUM test statistics in high dimensions. The proposed bootstrap CUSUM test is fully data dependent and it has strong theoretical guarantees under arbitrary dependence structures and mild moment conditions. Specifically, we show that with a boundary removal parameter the bootstrap CUSUM test enjoys the uniform validity in size under the null and it achieves the minimax separation rate under the sparse alternatives when the dimension p can be larger than the sample size n. Once a change point is detected, we estimate the change point location by maximising the ℓ∞-norm of the generalised CUSUM statistics at two different weighting scales corresponding to covariance stationary and non-stationary CUSUM statistics. For both estimators, we derive their rates of convergence and show that dimension impacts the rates only through logarithmic factors, which implies that consistency of the CUSUM estimators is possible when p is much larger than n. In the presence of multiple change points, we propose a principled bootstrap-assisted binary segmentation (BABS) algorithm to dynamically adjust the change point detection rule and recursively estimate their locations. We derive its rate of convergence under suitable signal separation and strength conditions. The results derived in this paper are non-asymptotic and we provide extensive simulation studies to assess the finite sample performance. The empirical evidence shows an encouraging agreement with our theoretical results.more » « less
-
This paper presents an extension of Naor’s analysis on the join-or-balk problem in observable M/M/1 queues. Although all other Markovian assumptions still hold, we explore this problem assuming uncertain arrival rates under the distributionally robust settings. We first study the problem with the classical moment ambiguity set, where the support, mean, and mean-absolute deviation of the underlying distribution are known. Next, we extend the model to the data-driven setting, where decision makers only have access to a finite set of samples. We develop three optimal joining threshold strategies from the perspectives of an individual customer, a social optimizer, and a revenue maximizer such that their respective worst-case expected benefit rates are maximized. Finally, we compare our findings with Naor’s original results and the traditional sample average approximation scheme. Funding: This research was supported by the National Science Foundation [Grants 2342505 and 2343869].more » « less
-
Abstract In this paper, we consider the travel time tomography problem for conformal metrics on a bounded domain, which seeks to determine the conformal factor of the metric from the lengths of geodesics joining boundary points. We establish forward and inverse stability estimates for simple conformal metrics under somea prioriconditions. We then apply the stability estimates to show the consistency of a Bayesian statistical inversion technique for travel time tomography with discrete, noisy measurements.more » « less
An official website of the United States government
