Poly(amidoamine) (PAMAM) dendrimers functionalized with ligands that are designed to interact with biological receptors are important macromolecules for the elucidation and mediation of biological recognition processes. Specifically, carbohydrate functionalized dendrimers are useful synthetic multivalent systems for the study of multivalent protein–carbohydrate interactions. For example, lactose functionalized glycodendrimers can be used to discern the function of galectins, galactoside-binding proteins that are often over-expressed during cancer progression. In order to effectively interpret cancer cellular assays using glycodendrimers, however, their properties in the presence of cells must first be assessed. Macromolecules that are taken up by cells would be expected to have access to many different cell signaling pathways and modes of action that solely extracellular macromolecules cannot utilize. In addition, macromolecules that display cellular toxicity could not be used as drug delivery vehicles. Here, we report fundamental studies of cellular toxicity, viability, and uptake with four generations of lactose functionalized PAMAM dendrimers. In all cases, the dendrimers are readily taken up by the cells but do not display any significant cellular toxicity. The glycodendrimers also increase cellular apoptosis, suggesting that they may abrogate the antiapoptotic protections afforded by galectin- 3 to cancer cells. The results reported here indicate that appropriately functionalized PAMAM dendrimers can be used as nontoxic tools for the study and mediation of both extra and intracellular cancer processes.
more »
« less
Probes for noninvasive biological visualization and biosensing of cancer cells
The early detection of tumors and precancerous conditions is vital for cancer diagnosis. Advances in fluorescence microscopic techniques and materials synthesis processes have revolutionized biomarker detection and image-guided cancer surveillance. In particular, novel materials-based diagnostic tools and innovative therapies have facilitated a precise understanding of biological processes at the molecular level. This critical review presents an overview of bioimaging probes, including functionalized chromophoric systems, non-functionalized chromophoric systems, and nanoscale biosensors. Technical challenges and future directions related to these approaches are considered.
more »
« less
- Award ID(s):
- 2029974
- PAR ID:
- 10502548
- Publisher / Repository:
- AIP Publishing
- Date Published:
- Journal Name:
- Applied Physics Reviews
- Volume:
- 10
- Issue:
- 4
- ISSN:
- 1931-9401
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
null (Ed.)Advanced materials and chemo-specific designs at the nano/micrometer-scale have ensured revolutionary progress in next-generation clinically relevant technologies. For example, isolating a rare population of cells, like circulating tumor cells (CTCs) from the blood amongst billions of other blood cells, is one of the most complex scientific challenges in cancer diagnostics. The chemical tunability for achieving this degree of exceptional specificity for extra-cellular biomarker interactions demands the utility of advanced entities and multistep reactions both in solution and in the insoluble state. Thus, this review delineates the chemo-specific substrates, chemical methods, and structure–activity relationships (SARs) of chemical platforms used for isolation and enumeration of CTCs in advancing the relevance of liquid biopsy in cancer diagnostics and disease management. We highlight the synthesis of cell-specific, tumor biomarker-based, chemo-specific substrates utilizing functionalized linkers through chemistry-based conjugation strategies. The capacity of these nano/micro substrates to enhance the cell interaction specificity and efficiency with the targeted tumor cells is detailed. Furthermore, this review accounts for the importance of CTC capture and other downstream processes involving genotypic and phenotypic CTC analysis in real-time for the detection of the early onset of metastases progression and chemotherapy treatment response, and for monitoring progression free-survival (PFS), disease-free survival (DFS), and eventually overall survival (OS) in cancer patients.more » « less
-
Peptide-Mediated Targeting Mesoporous Silica Nanoparticles: A Novel Tool for Fighting Bladder CancerTransitional cell carcinoma of the bladder is particularly devastating due to its high rate of recurrence and difficulty in retention of treatments within the bladder. Current cystoscopic approaches to detect and stage the tumor are limited by the penetrative depth of the cystoscope light source, and intravesical dyes that highlight tumors for surgical resection are non-specific. To address the needs for improved specificity in tumor detection and follow-up, we report on a novel technology relying on the engineered core of mesoporous silica (MSN) with surface modifications that generate contrast in fluorescence and magnetic resonance imaging (MRI). The particle surface was further functionalized to include a bladder cancer cell specific peptide, Cyc6, identified via phage display. This peptide possesses nanomolar specificity for bladder cancer cells and homology across multiple species including mouse, canine, and human. Our study takes advantage of its target expression in bladder tumor which is not expressed in normal bladder wall. When functionalized to MSN, the Cyc6 improved binding efficiency and specificity for bladder cancer cells in vitro. In an in vivo model, MSN instilled into bladders of tumor-bearing mice enhanced T 1- and T 2-weighted MRI signals, improving the detection of the tumor boundaries. These findings support the notion that our targeted nanomaterial presents new options for early detection and eventual therapeutic intervention. Ultimately, the combination of real-time and repeated MRI evaluation of the tumors enhanced by nanoparticle contrast have the potential for translation into human clinical studies for tumor staging, therapeutic monitoring, and drug delivery.more » « less
-
Thrombospondin-2 (THBS2) is a prevailing prognostic biomarker implicated in different cancer types, such as deadly colorectal, pancreas, and triple-negative breast cancers. While the current methods for cancer-relevant protein detection, such as enzyme-linked immunosorbent assay (ELISA), mass spectrometry, and immunohistochemistry, are feasible at advanced stages, they have shortcomings in sensitivity, specificity, and accessibility, particularly at low concentrations in complex biological fluids for early detection. Here, we propose and demonstrate a modular, in-solution assay design concept, Nanoparticle-Supported Rapid Electronic Detection (NasRED), as a versatile cancer screening and diagnostic platform. NasRED utilizes antibody-functionalized gold nanoparticles (AuNPs) to capture target proteins from a minute amount of sample (<10 µL) and achieve optimal performance with a short assay time by introducing active fluidic forces that act to promote biochemical reaction and accelerate signal transduction. This rapid (15 min) process serves to form AuNP clusters upon THBS2 binding and subsequently precipitate such clusters, resulting in color modulation of the test tubes that is dependent on the THBS2 concentration. Finally, a semiconductor-based, portable electronic device is used to digitize the optical signals for the sensitive detection of THBS2. High sensitivity (femtomolar level) and a large dynamic range (five orders of magnitude) are obtained to analyze THBS2 spiked in PBS, serum, whole blood, saliva, cerebrospinal fluids, and synovial fluids. High specificity is also preserved in differentiating THBS2 from other markers such as cancer antigen (CA) 19-9 and bovine serum albumin (BSA). This study highlights NasRED’s potential to enhance cancer prognosis and screening by offering a cost-effective, accessible, and minimally invasive solution.more » « less
-
To sensitively detect multiple and cross-species disease-related targets from a single biological sample in a quick and reliable manner is of high importance in accurately diagnosing and monitoring diseases. Herein, a surface-enhanced Raman scattering (SERS) sensor based on a functionalized multiple-armed tetrahedral DNA nanostructure (FMTDN) immobilized silver nanorod (AgNR) array substrate and Au nanoparticle (AuNP) SERS tags is constructed to achieve both multiplex detection and enhanced sensitivity using a sandwich strategy. The sensor can achieve single, dual, and triple biomarker detections of three lung cancer-related nucleic acid and protein biomarkers, i.e. , miRNA-21, miRNA-486 and carcinoembryonic antigen (CEA) in human serum. The enhanced SERS signals in multiplex detections are due to the DNA self-assembled AuNP clusters on the silver nanorod array during the assay, and the experimentally obtained relative enhancement factor ratios, 150 for AuNP dimers and 840 for AuNP trimers, qualitatively agree with the numerically calculated local electric field enhancements. The proposed FMTDN-functionalized AgNR SERS sensor is capable of multiplex and cross-species detection of nucleic acid and protein biomarkers with improved sensitivity, which has great potential for the screening and clinical diagnosis of cancer in the early stage.more » « less
An official website of the United States government

