skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: A Handheld Fine-Grained RFID Localization System with Complex-Controlled Polarization
There is much interest in fine-grained RFID localization systems. Existing systems for accurate localization typically require infrastructure, either in the form of extensive reference tags or many antennas (e.g., antenna arrays) to localize RFID tags within their radio range. Yet, there remains a need for fine-grained RFID localization solutions that are in a compact, portable, mobile form, that can be held by users as they walk around areas to map them, such as in retail stores, warehouses, or manufacturing plants. We present the design, implementation, and evaluation of POLAR, a portable handheld system for fine-grained RFID localization. Our design introduces two key innovations that enable robust, accurate, and real-time localization of RFID tags. The first is complex-controlled polarization (CCP), a mechanism for localizing RFIDs at all orientations through software-controlled polarization of two linearly polarized antennas. The second is joint tag discovery and localization (JTDL), a method for simultaneously localizing and reading tags with zero-overhead regardless of tag orientation. Building on these two techniques, we develop an end-to-end handheld system that addresses a number of practical challenges in self-interference, efficient inventorying, and self-localization. Our evaluation demonstrates that POLAR achieves a median accuracy of a few centimeters in each of the x/y/z dimensions in practical indoor environments.  more » « less
Award ID(s):
1844280 2232748
PAR ID:
10502570
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
ACM
Date Published:
ISBN:
9781450399906
Page Range / eLocation ID:
1 to 15
Format(s):
Medium: X
Location:
Madrid Spain
Sponsoring Org:
National Science Foundation
More Like this
  1. The majority of existing RFID readers rely on circularly polarized or switched polarization antennas for powering and communicating with tags.In this paper, we argue that a new form of software-controlled polarization brings important benefits to the tasks of powering, communicating with, and localizing RFID tags. Using only two linearly polarized antennas, we demonstrate how one could generate an arbitrarily linear polarization in the same plane relying entirely on software control. We incorporate this approach into a protocol that automatically discovers RFID orientations in the environment and show how this approach increases the range(or alternatively reduces the transmit power) of RFID readers. We also demonstrate this approach in an end-to-end RFID localization application. 
    more » « less
  2. This demo presents RFind, a system that enables fine-grained RFID localization via ultra-wideband emulation. RFind operates by measuring the time-of-flight -- i.e., the time it takes the signal to travel from an antenna to an RFID tag. To do so, it emulates an ultra-wide bandwidth on today's narrowband RFIDs without requiring any hardware modification to the tags. It then uses the large emulated bandwidth to estimate the time-of-flight and localize RFIDs. In contrast to past RFID localization proposals, RFind can operate in multipath-rich environments without reference tags and without requiring tag or antenna motion. The demo will allow users to move RFID-tagged objects to any location in line-of-sight, non-line-of-sight, and multi-path rich settings and check that the system can accurately localize the objects. 
    more » « less
  3. UHF RFID tags have been widely used for contactless inventory and tracking applications. One fundamental problem with RFID readers is their limited tag reading rate. Existing RFID readers (e.g., Impinj Speedway) can read about 35 tags per second in a read zone, which is far from enough for many applications. In this paper, we present the first-of-its-kind RFID reader (mReader), which borrows the idea of multi-user MIMO (MU-MIMO) from cellular networks to enable concurrent multi-tag reading in passive RFID systems. mReader is equipped with multiple antennas for implicit beamforming in downlink transmissions. It is enabled by three key techniques: uplink collision recovery, transition-based channel estimation, and zero-overhead channel calibration. In addition, mReader employs a Q-value adaptation algorithm for medium access control to maximize its tag reading rate. We have built a prototype of mReader on USRP X310 and demonstrated for the first time that a two-antenna reader can read two commercial off-the-shelf (COTS) tags simultaneously. Numerical results further show that mReader can improve the tag reading rate by 45% compared to existing RFID readers. 
    more » « less
  4. null (Ed.)
    Passive radio-frequency identification (RFID) tags are attractive because they are low cost, battery-free, and easy to deploy. This technology is traditionally being used to identify tags attached to the objects. In this paper, we explore the feasibility of turning passive RFID tags into battery-free temperature sensors. The impedance of the RFID tag changes with the temperature and this change will be manifested in the reflected signal from the tag. This opens up an opportunity to realize battery-free temperature sensing using a passive RFID tag with already deployed Commercial Off-the-Shelf (COTS) RFID reader-antenna infrastructure in supply chain management or inventory tracking. However, it is challenging to achieve high accuracy and robustness against the changes in the environment. To address these challenges, we first develop a detailed analytical model to capture the impact of temperature change on the tag impedance and the resulting phase of the reflected signal. We then build a system that uses a pair of tags, which respond differently to the temperature change to cancel out other environmental impacts. Using extensive evaluation, we show our model is accurate and our system can estimate the temperature within a 2.9 degree centigrade median error and support a normal read range of 3.5 m in an environment-independent manner. 
    more » « less
  5. We present RL2, a robotic system for efficient and accurate localization of UHF RFID tags. In contrast to past robotic RFID localization systems, which have mostly focused on location accuracy, RL2 learns how to jointly optimize the accuracy and speed of localization. To do so, it introduces a reinforcement learning-based (RL) trajectory optimization network that learns the next best trajectory for a robot-mounted reader antenna. Our algorithm encodes the aperture length and location confidence (using a synthetic-aperture-radar formulation) from multiple RFID tags into the state observations and uses them to learn the optimal trajectory. We built an end-to-end prototype of RL2 with an antenna moving on a ceiling-mounted 2D robotic track. We evaluated RL2 and demonstrated that with the median 3D localization accuracy of 0.55m, it locates multiple RFID tags 2.13x faster compared to a baseline strategy. Our results show the potential for RL-based RFID localization to enhance the efficiency of RFID inventory processes in areas spanning manufacturing, retail, and logistics. 
    more » « less