skip to main content


This content will become publicly available on April 18, 2025

Title: Supercell Tornadogenesis: Recent Progress in our State of Understanding
Abstract

Over the last decade, supercell simulations and observations with ever increasing resolution have provided new insights into the vortex-scale processes of tornado formation. This article incorporates these and other recent findings into the existing three-step model by adding an additional fourth stage. The goal is to provide an updated and clear picture of the physical processes occurring during tornadogenesis. Specifically, we emphasize the importance of the low-level wind shear and mesocyclone for tornado potential, the organization and interaction of relatively small-scale pre-tornadic vertical vorticity maxima, and the transition to a tornado-characteristic flow. Based on these insights, guiding research questions are formulated for the decade ahead.

 
more » « less
Award ID(s):
2152537
NSF-PAR ID:
10502579
Author(s) / Creator(s):
; ; ; ; ; ; ;
Publisher / Repository:
AMS
Date Published:
Journal Name:
Bulletin of the American Meteorological Society
ISSN:
0003-0007
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Abstract Mid-latitude jet streaks are known to produce conditions broadly supportive of tornado outbreaks, including forcing for large-scale ascent, increased wind shear, and decreased static stability. Although many processes may initiate a jet streak, we focus here on the development of jet maxima by interactions between the polar jet and tropopause polar vortices (TPVs). Originating from the Arctic, TPVs are long-lived circulations on the tropopause, which can be advected into the mid-latitudes. We hypothesize that when these vortices interact with the jet, they may contribute supplemental forcing for ascent and shear to tornado outbreaks, assuming other environmental conditions supportive of tornado development exist. Using a case set of significant tornado outbreak days from three states—Oklahoma, Illinois, and Alabama—we show that a vortex-jet streak structure is present (within 1250 km) in around two-thirds of tornado outbreaks. These vortices are commonly Arctic in origin (i.e., are TPVs) and are advected through a consistent path of entry into the mid-latitudes in the week before the outbreak, moving across the Northern Pacific and into the Gulf of Alaska before turning equatorward along the North American coast. These vortices are shown to be more intense and longer-lived than average. We further demonstrate that statistically significant patterns of wind shear, quasi-geostrophic forcing for ascent, and low static stability are present over the outbreak regions on the synoptic scale. In addition, we find that TPVs associated with tornadic events occur most often in the spring and are associated with greater low-level moisture when compared to non-tornadic TPV cases. 
    more » « less
  2. Abstract

    Tornadoes, as highly destructive weather events, require accurate detection for effective decision‐making. Traditional radar‐based tornado detection algorithms (TDA) face challenges with limited tornado feature extraction capabilities, leading to high false alarm rates and low detection probabilities. This study introduces the Multi‐Task Identification Network (MTI‐Net), leveraging Doppler radar data to enhance tornado recognition. MTI‐Net integrates tornado detection and estimation tasks to acquire comprehensive spatial and locational information. As part of MTI‐Net, we introduce a novel backbone network of Multi‐Head Convolutional Block (MHCB), which incorporates Spatial and Channel Attention Units (SAU and CAU). SAU optimizes local tornado feature extraction, while CAU reduces false alarms by enhancing dependencies among input variables. Experiments demonstrate the superiority of MTI‐Net over TDA, with a decrease in false alarm rates from 0.94 to 0.46 and an increase in hit rates from 0.23 to 0.81, highlighting the effectiveness of MTI‐Net in handling small‐scale tornado events.

     
    more » « less
  3. Bansal, M (Ed.)
    Predicting the secondary structure of RNA is an important problem in molecular biology, providing insights into the function of non-coding Rn As and with broad applications in understanding disease, the development of new drugs, among others. Combinatorial algorithms for predicting RNA foldings can generate an exponentially large number of equally optimal foldings with respect to a given optimization criterion, making it difficult to determine how well any single folding represents the entire space. We provide efficient new algorithms for providing insights into this large space of optimal RNA foldings and a research software tool, toRNAdo, that implements these algorithms. 
    more » « less
  4. Tornadoes remain an active subject of observational and numerical research due to the damage and fatalities they cause worldwide as well as poor understanding of their behavior, such as what processes result in their genesis and what determines their longevity and morphology. A numerical model executed on a supercomputer run at high resolution can serve as a powerful tool for exploring the rapidly evolving tornado-scale features within a simulated storm, but saving large amounts data for meaningful analysis can result in unacceptably slow model performance, an unwieldy amount of saved data, and saved data spread across millions of files. In this paper, a system for efficiently saving and managing hundreds of terabytes of compressed model output is described to support a supercomputer simulation of a tornadic supercell thunderstorm. The challenges of managing a simulation spanning over a quarter-trillion grid volumes across the Blue Waters supercomputer are also described. The simulated supercell produces a long-track EF5 tornado, and the near-tornado environment is described during tornadogenesis, where single upward-growing vortex undergoes several vortex mergers before transitioning into a multiple-vortex tornado. 
    more » « less
  5. Abstract

    A localized tornado and severe hail climatology is updated and enhanced for eastern Colorado. This region is one of the most active severe weather areas in the United States because of its location immediately east of the Rocky Mountains, intrusions of Gulf of Mexico moisture into a dry climate, and various small-scale topographically forced features such as the “Denver Cyclone.” Since the 1950s, both annual tornado and severe (≥1.0 in.; 1 in. = 25.4 mm) hail reports and days have been increasing across the area, but several nonmeteorological factors distort the record. Of note is a large population bias in the severe hail data, with reports aligned along major roadways and in cities, and several field projects contributing to an absence of (E)F0 tornado reports [on the (enhanced) Fujita scale] in the 1980s. In the more consistently observed period since 1997, tornado reports and days show a slight decreasing trend while severe hail reports and days show an increasing trend, although large variability exists on the county level. Eastern Colorado tornadoes are predominantly weak, rarely above (E)F1 intensity, and with a maximum just east of the northern urban corridor. Severe hail has a maximum along the foothills and shows a trend toward a larger ratio of significant (≥2.0 in.; ≥50.8 mm) hail to severe hail reports over time. Both tornadoes and severe hail have trended toward shorter seasons since 1997, mostly attributable to an earlier end to the season. By assessing current and historical trends from a more localized perspective, small-scale climatological features and local societal impacts are exposed—features that national climatologies can miss.

     
    more » « less