skip to main content


Search for: All records

Award ID contains: 2130936

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Supercell thunderstorms develop low-level rotation via tilting of environmental horizontal vorticity (ωh) by the updraft. This rotation induces dynamic lifting that can stretch near-surface vertical vorticity into a tornado. Low-level updraft rotation is generally thought to scale with 0–500 m storm-relative helicity (SRH): the combination of storm-relative flow, |SRF|, |ωh|, and cosϕ(whereϕis the angle betweenSRFandωh). It is unclear how much influence each component of SRH has in intensifying the low-level mesocyclone. This study surveys these three components using self-organizing maps (SOMs) to distill 15 906 proximity soundings for observed right-moving supercells. Statistical analyses reveal the component most highly correlated to SRH and to streamwise vorticity (ωs) in the observed profiles is |ωh|. Furthermore, |ωh| and |SRF| are themselves highly correlated due to their shared dependence on the hodograph length. The representative profiles produced by the SOMs were combined with a common thermodynamic profile to initialize quasi-realistic supercells in a cloud model. The simulations reveal that, across a range of real-world profiles, intense low-level mesocyclones are most closely linked toωhandSRF, while the angle between them appears to be mostly inconsequential.

    Significance Statement

    About three-fourths of all tornadoes are produced by rotating thunderstorms (supercells). When the part of the storm near cloud base (approximately 1 km above the ground) rotates more strongly, the chance of a tornado dramatically increases. The goal of this study is to identify the simplest characteristic(s) of the environmental wind profile that can be used to forecast the likelihood of strong cloud-base rotation. This study concludes that the most important ingredients for storm rotation are the magnitudes of the horizontal vertical wind shear between the surface and 500 m and the storm inflow wind, irrespective of their relative directions. This finding may lead to improved operational identification of environments favoring tornado formation.

     
    more » « less
  2. Abstract

    The development and intensification of low-level mesocyclones in supercell thunderstorms have often been attributed, at least in part, to augmented streamwise vorticity generated baroclinically in the forward flank of supercells. However, the ambient streamwise vorticity of the environment (often quantified via storm-relative helicity), especially near the ground, is particularly skillful at discriminating between nontornadic and tornadic supercells. This study investigates whether the origins of the inflow air into supercell low-level mesocyclones, both horizontally and vertically, can help explain the dynamical role of environmental versus storm-generated vorticity in the development of low-level mesocyclone rotation. Simulations of supercells, initialized with wind profiles common to supercell environments observed in nature, show that the air bound for the low-level mesocyclone primarily originates from the ambient environment (rather than from along the forward flank) and from very close to the ground, often in the lowest 200–400 m of the atmosphere. Given that the near-ground environmental air comprises the bulk of the inflow into low-level mesocyclones, this likely explains the forecast skill of environmental streamwise vorticity in the lowest few hundred meters of the atmosphere. The low-level mesocyclone does not appear to require much augmentation from the development of additional horizontal vorticity in the forward flank. Instead, the dominant contributor to vertical vorticity within the low-level mesocyclone is from the environmental horizontal vorticity. This study provides further context to the ongoing discussion regarding the development of rotation within supercell low-level mesocyclones.

    Significance Statement

    Supercell thunderstorms produce the majority of tornadoes, and a defining characteristic of supercells is their rotating updraft, known as the “mesocyclone.” When the mesocyclone is stronger at lower altitudes, the likelihood of tornadoes increases. The purpose of this study is to understand if the rotation of the mesocyclone in supercells is due to horizontal spin present in the ambient environment or whether additional horizontal spin generated by the storm itself primarily drives this rotation. Our results suggest that inflow air into supercells and low-level mesocyclone rotation are mainly due to the properties of the environmental inflow air, especially near the ground. This hopefully provides further context to how our community views the development of low-level mesocyclones in supercells.

     
    more » « less
  3. Abstract

    This article introduces an analytic formula for entraining convective available potential energy (ECAPE) with an entrainment rate that is determined directly from an environmental sounding, rather than prescribed by the formula user. Entrainment is connected to the background environment using an eddy diffusivity approximation for lateral mixing, updraft geometry assumptions, and mass continuity. These approximations result in a direct correspondence between the storm-relative flow and the updraft radius and an inverse scaling between the updraft radius squared and entrainment rate. The aforementioned concepts, combined with the assumption of adiabatic conservation of moist static energy, yield an explicit analytic equation for ECAPE that depends entirely on state variables in an atmospheric profile and a few constant parameters with values that are established in past literature. Using a simplified Bernoulli-like equation, the ECAPE formula is modified to account for updraft enhancement via kinetic energy extracted from the cloud’s background environment. CAPE and ECAPE can be viewed as predictors of the maximum vertical velocitywmaxin an updraft. Hence, these formulas are evaluated usingwmaxfrom past numerical modeling studies. Both of the new formulas improve predictions ofwmaxsubstantially over commonly used diagnostic parameters, including undiluted CAPE and ECAPE with a constant prescribed entrainment rate. The formula that incorporates environmental kinetic energy contribution to the updraft correctly predicts instances of exceedance ofbywmax, and provides a conceptual explanation for why such exceedance is rare among past simulations. These formulas are potentially useful in nowcasting and forecasting thunderstorms and as thunderstorm proxies in climate change studies.

    Significance Statement

    Substantial mixing occurs between the upward-moving air currents in thunderstorms (updrafts) and the surrounding comparatively dry environmental air, through a process called entrainment. Entrainment controls thunderstorm intensity via its diluting effect on the buoyancy of air within updrafts. A challenge to representing entrainment in forecasting and predictions of the intensity of updrafts in future climates is to determine how much entrainment will occur in a given thunderstorm environment without a computationally expensive high-resolution simulation. To address this gap, this article derives a new formula that computes entrainment from the properties of a single environmental profile. This formula is shown to predict updraft vertical velocity more accurately than past diagnostics, and can be used in forecasting and climate prediction to improve predictions of thunderstorm behavior and impacts.

     
    more » « less
  4. Abstract

    This study investigates whether quasi-random surface vertical vorticity is sufficient for tornadogenesis when combined with an updraft typical of tornadic supercells. The viability of this pathway could mean that a coherent process to produce well-organized surface vertical vorticity is rather unimportant. Highly idealized simulations are used to establish random noise as a possible seed for the production of tornado-like vortices (TLVs). A number of sensitivities are then examined across the simulations. The most explanatory predictor of whether a TLV will form (and how strong it will become) is the maximal value of initial surface circulation found near the updraft. Perhaps surprisingly, sufficient circulation for tornadogenesis is often present even when the surface vertical vorticity field lacks any obvious organized structure. The other key ingredient for TLV formation is confirmed to be a large vertical gradient in vertical velocity close to the ground (to promote stretching). Overall, it appears that random surface vertical vorticity is indeed sufficient for TLV formation given adequate stretching. However, it is shown that longer-wavelength noise is more likely to be associated with substantial surface circulation (because it is the areal integral of vertical vorticity). Thus, coherent vorticity sources that produce longer-wavelength structures are likely to be the most supportive of tornadogenesis.

     
    more » « less
  5. Abstract The national upgrade of the operational weather radar network to include polarimetric capabilities has lead to numerous studies focusing on polarimetric radar signatures commonly observed in supercells. One such signature is the horizontal separation of regions of enhanced differential reflectivity ( Z DR ) and specific differential phase ( K DP ) values due to hydrometeor size sorting. Recent observational studies have shown that the orientation of this separation tends to be more perpendicular to storm motion in supercells that produce tornadoes. Although this finding has potential operational utility, the physical relationship between this observed radar signature and tornadic potential is not known. This study uses an ensemble of supercell simulations initialized with tornadic and nontornadic environments to investigate this connection. The tendency for tornadic supercells to have a more perpendicular separation orientation was reproduced, although to a lesser degree. This difference in orientation angles was caused by stronger rearward storm-relative flow in the nontornadic supercells, leading to a rearward shift of precipitation and, therefore, the enhanced K DP region within the supercell. Further, this resulted in an unfavorable rearward shift of the negative buoyancy region, which led to an order of magnitude less baroclinic generation of circulation in the nontornadic simulations compared to tornadic simulations. 
    more » « less
  6. Abstract Sufficient low-level storm-relative flow is a necessary ingredient for sustained supercell thunderstorms and is connected to supercell updraft width. Assuming a supercell exists, the role of low-level storm-relative flow in regulating supercells’ low-level mesocyclone intensity is less clear. One possibility considered in this article is that storm-relative flow controls mesocyclone and tornado width via its modulation of overall updraft extent. This hypothesis relies on a previously postulated positive correspondence between updraft width, mesocyclone width, and tornado width. An alternative hypothesis is that mesocyclone characteristics are primarily regulated by horizontal streamwise vorticity irrespective of storm-relative flow. A matrix of supercell simulations was analyzed to address the aforementioned hypotheses, wherein horizontal streamwise vorticity and storm-relative flow were independently varied. Among these simulations, mesocyclone width and intensity were strongly correlated with horizontal streamwise vorticity, and comparatively weakly correlated with storm-relative flow, supporting the second hypothesis. Accompanying theory and trajectory analysis offers the physical explanation that, when storm-relative flow is large and updrafts are wide, vertically tilted streamwise vorticity is projected over a wider area but with a lesser average magnitude than when these parameters are small. These factors partially offset one another, degrading the correspondence of storm-relative flow with updraft circulation and rotational velocity, which are the mesocyclone attributes most closely tied to tornadoes. These results refute the previously purported connections between updraft width, mesocyclone width, and tornado width, and emphasize horizontal streamwise vorticity as the primary control on low-level mesocyclones in sustained supercells. Significance Statement The intensity of a supercell thunderstorm’s low-level rotation, known as the “mesocyclone,” is thought to influence tornado likelihood. Mesocyclone intensity depends on many environmental attributes that are often correlated with one another and difficult to disentangle. This study used a large body of numerical simulations to investigate the influence of the speed of low-level air entering a supercell (storm-relative flow), the horizontal spin of the ambient air entering the thunderstorm (streamwise vorticity), and the width of the storm’s updraft. Our results suggest that the rotation of the mesocyclone in supercells is primarily influenced by streamwise vorticity, with comparatively weaker connections to storm-relative flow and updraft width. These findings provide important clarification in our scientific understanding of how a storm’s environment influences the rate of rotation of its mesocyclone, and the associated tornado threat. 
    more » « less