Large Language Models (LLMs) are pre-trained on large-scale corpora and excel in numerous general natural language processing (NLP) tasks, such as question answering (QA). Despite their advanced language capabilities, when it comes to domain-specific and knowledge-intensive tasks, LLMs suffer from hallucinations, knowledge cut-offs, and lack of knowledge attributions. Additionally, fine tuning LLMs' intrinsic knowledge to highly specific domains is an expensive and time consuming process. The retrieval-augmented generation (RAG) process has recently emerged as a method capable of optimization of LLM responses, by referencing them to a predetermined ontology. It was shown that using a Knowledge Graph (KG) ontology for RAG improves the QA accuracy, by taking into account relevant sub-graphs that preserve the information in a structured manner. In this paper, we introduce SMART-SLIC, a highly domain-specific LLM framework, that integrates RAG with KG and a vector store (VS) that store factual domain specific information. Importantly, to avoid hallucinations in the KG, we build these highly domain-specific KGs and VSs without the use of LLMs, but via NLP, data mining, and nonnegative tensor factorization with automatic model selection. Pairing our RAG with a domain-specific: (i) KG (containing structured information), and (ii) VS (containing unstructured information) enables the development of domain-specific chat-bots that attribute the source of information, mitigate hallucinations, lessen the need for fine-tuning, and excel in highly domain-specific question answering tasks. We pair SMART-SLIC with chain-of-thought prompting agents. The framework is designed to be generalizable to adapt to any specific or specialized domain. In this paper, we demonstrate the question answering capabilities of our framework on a corpus of scientific publications on malware analysis and anomaly detection.
more »
« less
Can Knowledge Graphs Reduce Hallucinations in LLMs? : A Survey
The contemporary LLMs are prone to producing hallucinations, stemming mainly from the knowledge gaps within the models. To address this critical limitation, researchers employ di- verse strategies to augment the LLMs by incorporating external knowledge, aiming to reduce hallucinations and enhance reasoning accuracy. Among these strategies, leveraging knowledge graphs as a source of external information has demonstrated promising results. In this survey, we comprehensively review these knowledge-graph-based augmentation techniques in LLMs, focusing on their efficacy in mitigating hallucinations. We systematically categorize these methods into three overarching groups, offering methodological comparisons and performance evaluations. Lastly, this survey explores the current trends and challenges associated with these techniques and outlines potential avenues for future research in this emerging field.
more »
« less
- Award ID(s):
- 2114789
- PAR ID:
- 10502605
- Publisher / Repository:
- Association for Computational Linguistics (ACL)
- Date Published:
- Journal Name:
- North American Chapter of the Association for Computational Linguistics
- Format(s):
- Medium: X
- Location:
- Mexico City
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Large Language Models (LLMs) have recently transformed both the academic and industrial landscapes due to their remarkable capacity to understand, analyze, and generate texts based on their vast knowledge and reasoning ability. Nevertheless, one major drawback of LLMs is their substantial computational cost for pre-training due to their unprecedented amounts of parameters. The disadvantage is exacerbated when new knowledge frequently needs to be introduced into the pre-trained model. Therefore, it is imperative to develop effective and efficient techniques to update pre-trained LLMs. Traditional methods encode new knowledge in pre-trained LLMs through direct fine-tuning. However, naively re-training LLMs can be computationally intensive and risks degenerating valuable pre-trained knowledge irrelevant to the update in the model. Recently,Knowledge-based Model Editing(KME), also known asKnowledge EditingorModel Editing, has attracted increasing attention, which aims at precisely modifying the LLMs to incorporate specific knowledge, without negatively influencing other irrelevant knowledge. In this survey, we aim at providing a comprehensive and in-depth overview of recent advances in the field of KME. We first introduce a general formulation of KME to encompass different KME strategies. Afterward, we provide an innovative taxonomy of KME techniques based on how the new knowledge is introduced into pre-trained LLMs, and investigate existing KME strategies while analyzing key insights, advantages, and limitations of methods from each category. Moreover, representative metrics, datasets, and applications of KME are introduced accordingly. Finally, we provide an in-depth analysis regarding the practicality and remaining challenges of KME and suggest promising research directions for further advancement in this field.more » « less
-
Hallucinations in large language models (LLMs), where they generate fluent but factually incorrect outputs, pose challenges for applications requiring strict truthfulness. This work proposes a multi-faceted approach to detect such hallucinations across various language tasks. We leverage automatic data annotation using a proprietary LLM, fine-tuning of the Mistral-7B-instruct-v0.2 model on annotated and benchmark data, role-based and rationale-based prompting strategies, and an ensemble method combining different model outputs through majority voting. This comprehensive framework aims to improve the robustness and reliability of hallucination detection for LLM generations. Code and data1 1 Introduction The modern natural language generation (NLG) (OpenAI et al., 2023; Touvron et al., 2023) landscape faces two interconnected challenges: firstly, current neural models have a tendency to produce f luent yet inaccurate outputs, and secondly, our evaluation metrics are better suited for assessing f luency rather than correctness(Bang et al., 2023; Guerreiro et al., 2023). This phenomenon, known as "hallucination," (Ji et al., 2023) where neural networks generate plausible-sounding but factually incorrect outputs, is a significant hurdle, especially for NLG applications that require strict adherence to correctness. For instance, in machine translation(Lee et al., 2019), producing a fluent translation that deviates from the source text’s meaning renders the entire translation pipeline unreliable. This issue may arise as LLMs are trained on vast amounts of data from the internet, which can contain inaccuracies, biases, and false information. Also, it may arise due improper representations learned during training even if good quality data is 1https://github.com/souvikdgp16/shroom_compos_mentis used. As a result, LLMs can sometimes hallucinate or fabricate details, especially when prompted to discuss topics outside their training data or make inferences beyond their capabilities. Hallucination detection (Liu et al., 2022), also known as factual verification or truthfulness evaluation, identifies and mitigates these hallucinations in the outputs of LLMs. This is an active area of research and development, as it is crucial for ensuring the reliability and trustworthiness of LLMgenerated content, particularly in high-stakes domains such as healthcare, finance, and legal applications. In this task, the primary focus will be to classify whether a generation is hallucinated. This work proposes a multi-faceted approach to detecting hallucinations in large language models.more » « less
-
Despite their extensive application in language understanding tasks, large language models (LLMs) still encounter challenges including hallucinations - occasional fabrication of information - and alignment issues - lack of associations with human-curated world models (e.g., intuitive physics or common-sense knowledge). Moreover, the black-box nature of LLMs presents significant obstacles in training them effectively to achieve desired behaviors. In particular, modifying the concept embedding spaces of LLMs can be highly intractable. This process involves analyzing the implicit impact of such adjustments on the myriad parameters within LLMs and the resulting inductive biases. We propose a novel architecture that wraps powerful function approximation architectures within an outer, interpretable read-out layer. This read-out layer can be scrutinized to explicitly observe the effects of concept modeling during the training of the LLM. Our method stands in contrast with gradient-based implicit mechanisms, which depend solely on adjustments to the LLM parameters and thus evade scrutiny. By conducting extensive experiments across both generative and discriminative language modeling tasks, we evaluate the capabilities of our proposed architecture relative to state-of-the-art LLMs of similar sizes. Additionally, we offer a qualitative examination of the interpretable read-out layer and visualize the concepts it captures. The results demonstrate the potential of our approach for effectively controlling LLM hallucinations and enhancing the alignment with human expectations.more » « less
-
Building a skilled cybersecurity workforce is paramount to building a safer digital world. However, the diverse skill set, constantly emerging vulnerabilities, and deployment of new cyber threats make learning cybersecurity challenging. Traditional education methods struggle to cope with cybersecurity's rapidly evolving landscape and keep students engaged and motivated. Different studies on students' behaviors show that an interactive mode of education by engaging through a question-answering system or dialoguing is one of the most effective learning methodologies. There is a strong need to create advanced AI-enabled education tools to promote interactive learning in cybersecurity. Unfortunately, there are no publicly available standard question-answer datasets to build such systems for students and novice learners to learn cybersecurity concepts, tools, and techniques. The education course material and online question banks are unstructured and need to be validated and updated by domain experts, which is tedious when done manually. In this paper, we propose CyberGen, a novel unification of large language models (LLMs) and knowledge graphs (KG) to generate the questions and answers for cybersecurity automatically. Augmenting the structured knowledge from knowledge graphs in prompts improves factual reasoning and reduces hallucinations in LLMs. We used the knowledge triples from cybersecurity knowledge graphs (AISecKG) to design prompts for ChatGPT and generate questions and answers using different prompting techniques. Our question-answer dataset, CyberQ, contains around 4k pairs of questions and answers. The domain expert manually evaluated the random samples for consistency and correctness. We train the generative model using the CyberQ dataset for question answering task.more » « less
An official website of the United States government

