skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: xG-Loc: 3GPP-compliant datasets for xG location-aware networks
Location awareness is vital in next generation (xG) wireless networks to enable different use cases, including location-based services (LBSs) and efficient network management. However, achieving the service level requirements specified by the 3rd Generation Partnership Project (3GPP) is challenging. This calls for new localization algorithms as well as for 3GPP-standardized scenarios to support their systematic development and testing. In this context, the availability of public datasets with 3GPP-compliant configurations is essential to advance the evolution of xG networks. xG-Loc is the first open dataset for localization algorithms and services fully compliant with 3GPP technical reports and specifications. xG-Loc includes received localization signals, measurements, and analytics for different network and signal configurations in indoor and outdoor scenarios with center frequencies from micro-waves in frequency range 1 (FR1) to millimeter-waves in frequency range 2 (FR2). Position estimates obtained via soft information-based localization and wireless channel quality via blockage intelligence are also included in xG-Loc. The rich set of data provided by xG-Loc enables the characterization of localization algorithms and services under common 3GPP-standardized scenarios in xG networks.  more » « less
Award ID(s):
2148251
PAR ID:
10502644
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
IEEE DataPort
Date Published:
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Integrated localization and communication (ILC) will be a key enabler for providing accurate location information and high data rate in next generation networks. This paper proposes a transmission frame structure and a soft information (SI)-based localization algorithm for position-assisted communications. The proposed ILC achieves improved localization accuracy and enhanced communication rate simultaneously by accounting for the statistical characteristics of the wireless environment. Results in 3rd Generation Partnership Project (3GPP) industrial scenarios show that the SI-based localization algorithm can achieve decimeter-level accuracy. Moreover, the position-assisted communication enhances the achievable rate, especially in scenarios with high mobility. 
    more » « less
  2. Abstract—Joint communication an dsensing allows the utiliza- tion of common spectral resources for communication and local- ization, reducing the cost of deployment. By using fifth generation (5G) New Radio (NR)(i.e.,the 3rd Generation Partnership Project Radio Access Network for 5G) reference signals,conventionally used for communication,this paper shows sub-meter precision localization is possible at millimeter wave frequencies.We derive the geometric dilution of precision of a bistatic radar configura- tion, a theoretical metric that characterizes how the target location estimation error varies as a function of the bistatic geometry and measurement errors.We develop a 5GNR compliant software test bench to characterize the measurement errors when estimating the time difference of arrival and angle of arrival with5GNR waveforms.The test bench is further utilized to demonstrate the accuracy of target localization and velocity estimation in several indoor and outdoor bistatic and multistatic configurations and to show that on average,the bistatic cconfiguration can achieve a location accuracy of 10.0 cm over a bistatic range of 25m, which can be further improved by deploying a multistaticradar configuration. Index Terms—5G NR;Bistatic Radar;Multistatic Radar;ge- ometric dilution of precision (GDOP);3GPP;localization;posi- tioning; position location 
    more » « less
  3. In the era of 5G and beyond, dynamic Time Division Duplex (TDD) has become essential for supporting applications that demand high bandwidth and low latency. Emerging uplink-intensive use cases such as real-time video analytics, autonomous vehicles and augmented reality further complicate the balance between uplink and downlink resources. Despite their potential, TDD policies employed by current 5G networks remain underexplored. Our investigation reveals that existing TDD policies are static and predominantly downlink-focused, failing to adapt to fluctuating network demands. We introduce Wixor, a robust dynamic TDD policy adaptation system tailored for 5G and next-generation (xG) networks. It proactively adjusts the allocation of TDD resources between uplink and downlink, addressing various practical challenges. Prototyped on a programmable testbed, Wixor demonstrates substantial performance improvements across diverse applications, achieving up to 96.5% enhancement in Quality of Experience (QoE) compared to existing baselines. 
    more » « less
  4. Abstract Surface acoustic waves (SAWs) have shown great potential for developing sensors for structural health monitoring (SHM) and lab‐on‐a‐chip (LOC) applications. Existing SAW sensors mainly rely on measuring the frequency shifts of high‐frequency (e.g., >0.1 GHz) resonance peaks. This study presents frequency‐locked wireless multifunctional SAW sensors that enable multiple wireless sensing functions, including strain sensing, temperature measurement, water presence detection, and vibration sensing. These sensors leverage SAW resonators on piezoelectric chips, inductive coupling‐based wireless power transmission, and, particularly, a frequency‐locked wireless sensing mechanism that works at low frequencies (e.g., <0.1 GHz). This mechanism locks the input frequency on the slope of a sensor's reflection spectrum and monitors the reflection signal's amplitude change induced by the changes of sensing parameters. The proof‐of‐concept experiments show that these wireless sensors can operate in a low‐power active mode for on‐demand wireless strain measurement, temperature sensing, and water presence detection. Moreover, these sensors can operate in a power‐free passive mode for vibration sensing, with results that agree well with laser vibrometer measurements. It is anticipated that the designs and mechanisms of the frequency‐locked wireless SAW sensors will inspire researchers to develop future wireless multifunctional sensors for SHM and LOC applications. 
    more » « less
  5. Recent years have witnessed the increasing penetration of wireless charging base stations in the workplace and public areas, such as airports and cafeteria. Such an emerging wireless charging infrastructure has presented opportunities for new indoor localization and identification services for mobile users. In this paper, we present QID, the first system that can identify a Qi-compliant mobile device during wireless charging in real-time. QID extracts features from the clock oscillator and control scheme of the power receiver and employs light-weight algorithms to classify the device. QID adopts 2-dimensional motion unit to emulate a variety of multi-coil designs of Qi, which allows for fine-grained device fingerprinting. Our results show that QID achieves high recognition accuracy. With the prevalence of public wireless charging stations, our results also have important implications for mobile user privacy. 
    more » « less