Quantitative dynamic strain measurements of the ground would be useful for engineering scale problems such as monitoring for natural hazards, soil-structure interaction studies, and non-invasive site investigation using full waveform inversion (FWI). Distributed acoustic sensing (DAS), a promising technology for these purposes, needs to be better understood in terms of its directional sensitivity, spatial position, and amplitude for application to engineering-scale problems. This study investigates whether the physical measurements made using DAS are consistent with the theoretical transfer function, reception patterns, and experimental measurements of ground strain made by geophones. Results show that DAS and geophone measurements are consistent in both phase and amplitude for broadband (10 s of Hz), high amplitude (10 s of microstrain), and complex wavefields originating from different positions around the array when: (1) the DAS channels and geophone locations are properly aligned, (2) the DAS cable provides good deformation coupling to the internal optical fiber, (3) the cable is coupled to the ground through direct burial and compaction, and (4) laser frequency drift is mitigated in the DAS measurements. The transfer function of DAS arrays is presented considering the gauge length, pulse shape, and cable design. The theoretical relationship between DAS-measured and pointwise strain for vertical and horizontal active sources is introduced using 3D elastic finite-difference simulations. The implications of using DAS strain measurements are discussed including directionality and magnitude differences between the actual and DAS-measured strain fields. Estimating measurement quality based on the wavelength-to-gauge length ratio for field data is demonstrated. A method for spatially aligning the DAS channels with the geophone locations at tolerances less than the spatial resolution of a DAS system is proposed.
more »
« less
DAS for 2-D MASW imaging: a case study on the benefits of flexible subarray processing
SUMMARY Distributed acoustic sensing (DAS) is a relatively new technology for recording the propagation of seismic waves, with promising applications in both engineering and geophysics. DAS's ability to simultaneously collect high spatial resolution waveforms over long arrays suggests that it is well-suited for near-surface imaging applications such as 2-D multichannel analysis of surface waves (MASWs), which require, at a minimum, long, linear arrays of single-component receivers. The 2-D MASW method uses a large number of sensor subarrays deployed along a linear alignment to produce 1-D shear-wave velocity (VS) profiles beneath each subarray. The 1-D VS profiles are then combined to form a pseudo-2-D VS image beneath the entire linear alignment that can be used for the purpose of identifying and characterizing lateral variations in subsurface layering. Traditionally, 2-D MASW is conducted using arrays consisting of either 24 or 48 geophones. While additional receivers could easily be incorporated into the testing configuration, it is rare for researchers and practitioners to have access to greater numbers of seismographs and geophones. When a limited number of geophones are available for deployment, there is a need to pre-determine the geophone spacing and subarray length prior to field data acquisition. Studies examining how the choice of subarray geometry impacts the resulting pseudo-2-D VS cross-sections have been largely limited to synthetic data. In response, this study utilizes DAS data to examine the effects of using various subarray lengths by comparing pseudo-2-D VS cross-sections derived from active-source waveforms collected at a well-characterized field site. DAS is particularly useful for 2-D MASW applications because the subarray geometry does not need to be determined prior to field data acquisition. We organize the DAS waveforms into multiple sets of overlapping MASW subarrays of differing lengths, ranging from 11 to 47 m, along the same alignment, allowing for direct comparison of the derived pseudo-2-D VS results at the site. We show that the length of the individual MASW subarrays has a significant effect on the resulting VS cross-sections, including the resolved location of a strong impedance contrasts at our study site, and evaluate the results relative to ground truth from invasive testing. Our results suggest that the choice of subarray length is important and should be carefully chosen to meet project-specific goals. Furthermore, analysts may consider using multiple subarray geometries during the data processing stage, as is made possible by DAS, to properly evaluate the uncertainty of 2-D MASW results. This study demonstrates the potential of using DAS to collect data for 2-D MASW in a manner that is efficient and flexible, and can be easily scaled up for use with very long arrays.
more »
« less
- Award ID(s):
- 2037900
- PAR ID:
- 10502753
- Publisher / Repository:
- Oxford University Press
- Date Published:
- Journal Name:
- Geophysical Journal International
- Volume:
- 237
- Issue:
- 3
- ISSN:
- 0956-540X
- Format(s):
- Medium: X Size: p. 1609-1623
- Size(s):
- p. 1609-1623
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Full waveform inversion (FWI) and distributed acoustic sensing (DAS) are powerful tools with potential to improve how seismic site characterization is performed. FWI is able to provide true 2D or 3D images of the subsurface by inverting stress wave recordings collected over a wide variety of scales. DAS can be used to efficiently collect high-resolution stress wave recordings from long and complex fiber optic arrays and is well-suited for large-scale site characterization projects. Due to the relative novelty of combining FWI and DAS, there is presently little published literature regarding the application of FWI to DAS data for near-surface (depths < 30 m) site characterization. We perform 2D FWI on DAS data collected at a well-characterized site using four different, site-specific 1D and 2D starting models. We discuss the unique benefits and challenges associated with inverting DAS data compared to traditional geophone data. We examine the impacts of using the various starting models on the final 2D subsurface images. We demonstrate that while the inversions performed using all four starting models are able to fit the major features of the DAS waveforms with similar misfit values, the final subsurface images can be quite different from one another at depths greater than about 10 m. As such, the best representation(s) of the subsurface are evaluated based on: (1) their agreement with borehole lithology logs that were not used in the development of the starting models, and (2) consistency at shallow depths between the final inverted images derived from multiple starting models. Our results demonstrate that FWI applied to DAS data has significant potential as a tool for near-surface site characterization while also emphasizing the significant impact that starting model selection can have on FWI results.more » « less
-
SUMMARY The Granada Basin in southeast Spain is an area of moderate seismicity. Yet, it hosts some of the highest seismic hazards in the Iberian Peninsula due to the presence of shallow soft sediments amplifying local ground motion. In urban areas, seismic measurements often suffer from sparse instrumentation. An enticing alternative to conventional seismometers is the distributed acoustic sensing (DAS) technology that can convert fibre-optic telecommunication cables into dense arrays of seismic sensors. In this study, we perform a shallow structure analysis using the ambient seismic field interferometry method. We conduct a DAS array field test in the city of Granada on the 26 and 27 August 2020, using a telecommunication fibre. In addition to the existing limitations of using DAS with unknown fibre-ground coupling conditions, the complex geometry of the fibre and limited data recording duration further challenge the extraction of surface-wave information from the ambient seismic field in such an urban environment. Therefore, we develop a processing scheme that incorporates a frequency–wavenumber (f−k) filter to enhance the quality of the virtual shot gathers and related multimode dispersion images. We are able to use this data set to generate several shear-wave velocity (VS) profiles for different sections of the cable. The shallow VS structure shows a good agreement with different geological conditions of soil deposits. This study demonstrates that DAS could provide insights into soil characterization and seismic microzonation in urban areas. In addition, the results contribute to a better understanding of local site response to ground motion.more » « less
-
SUMMARY A robust, in situ estimate of shear-wave velocity VS and the small-strain damping ratio DS (or equivalently, the quality factor QS) is crucial for the design of buildings and geotechnical systems subjected to vibrations or earthquake ground shaking. A promising technique for simultaneously obtaining both VS and DS relies on the Multichannel Analysis of Surface Waves (MASW) method. MASW can be used to extract the Rayleigh wave phase velocity and phase attenuation data from active-source seismic traces recorded along linear arrays. Then, these data can be inverted to obtain VS and DS profiles. This paper introduces two novel methodologies for extracting the phase velocity and attenuation data. These new approaches are based on an extension of the beamforming technique which can be combined with a modal filter to isolate different Rayleigh propagation modes. Thus, the techniques return reliable phase velocity and attenuation estimates even in the presence of a multimode wavefield, which is typical of complex stratigraphic conditions. The reliability and effectiveness of the proposed approaches are assessed on a suite of synthetic wavefields and on experimental data collected at the Garner Valley Downhole Array and Mirandola sites. The results reveal that, under proper modelling of wavefield conditions, accurate estimates of Rayleigh wave phase velocity and attenuation can be extracted from active-source MASW wavefields over a broad frequency range. Eventually, the estimation of soil mechanical parameters also requires a robust inversion procedure to map the experimental Rayleigh wave parameters into soil models describing VS and DS with depth. The simultaneous inversion of phase velocity and attenuation data is discussed in detail in the companion paper.more » « less
-
Abstract Metasurfaces, as a two-dimensional (2D) version of metamaterials, have drawn considerable attention for their revolutionary capability in manipulating the amplitude, phase, and polarization of light. As one of the most important types of metasurfaces, geometric metasurfaces provide a versatile platform for controlling optical phase distributions due to the geometric nature of the generated phase profile. However, it remains a great challenge to design geometric metasurfaces for realizing spin-switchable functionalities because the generated phase profile with the converted spin is reversed once the handedness of the incident beam is switched. Here, we propose and experimentally demonstrate chiral geometric metasurfaces based on intrinsically chiral plasmonic stepped nanoapertures with a simultaneously high circular dichroism in transmission (CDT) and large cross-polarization ratio (CPR) in transmitted light to exhibit spin-controlled wavefront shaping capabilities. The chiral geometric metasurfaces are constructed by merging two independently designed subarrays of the two enantiomers for the stepped nanoaperture. Under a certain incident handedness, the transmission from one subarray is allowed, while the transmission from the other subarray is strongly prohibited. The merged metasurface then only exhibits the transmitted signal with the phase profile of one subarray, which can be switched by changing the incident handedness. Based on the chiral geometric metasurface, both chiral metasurface holograms and the spin-dependent generation of hybrid-order Poincaré sphere beams are experimentally realized. Our approach promises further applications in spin-controlled metasurface devices for complex beam conversion, image processing, optical trapping, and optical communications.more » « less
An official website of the United States government
