Abstract For$$E \subset \mathbb {N}$$, a subset$$R \subset \mathbb {N}$$isE-intersectiveif for every$$A \subset E$$having positive relative density,$$R \cap (A - A) \neq \varnothing $$. We say thatRischromatically E-intersectiveif for every finite partition$$E=\bigcup _{i=1}^k E_i$$, there existsisuch that$$R\cap (E_i-E_i)\neq \varnothing $$. When$$E=\mathbb {N}$$, we recover the usual notions of intersectivity and chromatic intersectivity. We investigate to what extent the known intersectivity results hold in the relative setting when$$E = \mathbb {P}$$, the set of primes, or other sparse subsets of$$\mathbb {N}$$. Among other things, we prove the following: (1) the set of shifted Chen primes$$\mathbb {P}_{\mathrm {Chen}} + 1$$is both intersective and$$\mathbb {P}$$-intersective; (2) there exists an intersective set that is not$$\mathbb {P}$$-intersective; (3) every$$\mathbb {P}$$-intersective set is intersective; (4) there exists a chromatically$$\mathbb {P}$$-intersective set which is not intersective (and therefore not$$\mathbb {P}$$-intersective).
more »
« less
Stability and exponential decay for magnetohydrodynamic equations
This paper focuses on a 2D magnetohydrodynamic system with only horizontal dissipation in the domain$$\Omega = \mathbb {T}\times \mathbb {R}$$with$$\mathbb {T}=[0,\,1]$$being a periodic box. The goal here is to understand the stability problem on perturbations near the background magnetic field$$(1,\,0)$$. Due to the lack of vertical dissipation, this stability problem is difficult. This paper solves the desired stability problem by simultaneously exploiting two smoothing and stabilizing mechanisms: the enhanced dissipation due to the coupling between the velocity and the magnetic fields, and the strong Poincaré type inequalities for the oscillation part of the solution, namely the difference between the solution and its horizontal average. In addition, the oscillation part of the solution is shown to converge exponentially to zero in$$H^{1}$$as$$t\to \infty$$. As a consequence, the solution converges to its horizontal average asymptotically.
more »
« less
- Award ID(s):
- 2104682
- PAR ID:
- 10502795
- Publisher / Repository:
- CAMBRIDGE UNIVERSITY PRESS
- Date Published:
- Journal Name:
- Proceedings of the Royal Society of Edinburgh: Section A Mathematics
- ISSN:
- 0308-2105
- Page Range / eLocation ID:
- 1 to 28
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract We give an explicit raising operator formula for the modified Macdonald polynomials$$\tilde {H}_{\mu }(X;q,t)$$, which follows from our recent formula for$$\nabla $$on an LLT polynomial and the Haglund-Haiman-Loehr formula expressing modified Macdonald polynomials as sums of LLT polynomials. Our method just as easily yields a formula for a family of symmetric functions$$\tilde {H}^{1,n}(X;q,t)$$that we call$$1,n$$-Macdonald polynomials, which reduce to a scalar multiple of$$\tilde {H}_{\mu }(X;q,t)$$when$$n=1$$. We conjecture that the coefficients of$$1,n$$-Macdonald polynomials in terms of Schur functions belong to$${\mathbb N}[q,t]$$, generalizing Macdonald positivity.more » « less
-
Abstract Define theCollatz map$${\operatorname {Col}} \colon \mathbb {N}+1 \to \mathbb {N}+1$$on the positive integers$$\mathbb {N}+1 = \{1,2,3,\dots \}$$by setting$${\operatorname {Col}}(N)$$equal to$$3N+1$$whenNis odd and$$N/2$$whenNis even, and let$${\operatorname {Col}}_{\min }(N) := \inf _{n \in \mathbb {N}} {\operatorname {Col}}^n(N)$$denote the minimal element of the Collatz orbit$$N, {\operatorname {Col}}(N), {\operatorname {Col}}^2(N), \dots $$. The infamousCollatz conjectureasserts that$${\operatorname {Col}}_{\min }(N)=1$$for all$$N \in \mathbb {N}+1$$. Previously, it was shown by Korec that for any$$\theta> \frac {\log 3}{\log 4} \approx 0.7924$$, one has$${\operatorname {Col}}_{\min }(N) \leq N^\theta $$for almost all$$N \in \mathbb {N}+1$$(in the sense of natural density). In this paper, we show that foranyfunction$$f \colon \mathbb {N}+1 \to \mathbb {R}$$with$$\lim _{N \to \infty } f(N)=+\infty $$, one has$${\operatorname {Col}}_{\min }(N) \leq f(N)$$for almost all$$N \in \mathbb {N}+1$$(in the sense of logarithmic density). Our proof proceeds by establishing a stabilisation property for a certain first passage random variable associated with the Collatz iteration (or more precisely, the closely related Syracuse iteration), which in turn follows from estimation of the characteristic function of a certain skew random walk on a$$3$$-adic cyclic group$$\mathbb {Z}/3^n\mathbb {Z}$$at high frequencies. This estimation is achieved by studying how a certain two-dimensional renewal process interacts with a union of triangles associated to a given frequency.more » « less
-
Abstract Designing an algorithm with a singly exponential complexity for computing semialgebraic triangulations of a given semialgebraic set has been a holy grail in algorithmic semialgebraic geometry. More precisely, given a description of a semialgebraic set$$S \subset \mathbb {R}^k$$by a first-order quantifier-free formula in the language of the reals, the goal is to output a simplicial complex$$\Delta $$, whose geometric realization,$$|\Delta |$$, is semialgebraically homeomorphic toS. In this paper, we consider a weaker version of this question. We prove that for any$$\ell \geq 0$$, there exists an algorithm which takes as input a description of a semialgebraic subset$$S \subset \mathbb {R}^k$$given by a quantifier-free first-order formula$$\phi $$in the language of the reals and produces as output a simplicial complex$$\Delta $$, whose geometric realization,$$|\Delta |$$is$$\ell $$-equivalent toS. The complexity of our algorithm is bounded by$$(sd)^{k^{O(\ell )}}$$, wheresis the number of polynomials appearing in the formula$$\phi $$, andda bound on their degrees. For fixed$$\ell $$, this bound issingly exponentialink. In particular, since$$\ell $$-equivalence implies that thehomotopy groupsup to dimension$$\ell $$of$$|\Delta |$$are isomorphic to those ofS, we obtain a reduction (having singly exponential complexity) of the problem of computing the first$$\ell $$homotopy groups ofSto the combinatorial problem of computing the first$$\ell $$homotopy groups of a finite simplicial complex of size bounded by$$(sd)^{k^{O(\ell )}}$$.more » « less
-
Abstract We study versions of the tree pigeonhole principle,$$\mathsf {TT}^1$$, in the context of Weihrauch-style computable analysis. The principle has previously been the subject of extensive research in reverse mathematics, an outstanding question of which investigation is whether$$\mathsf {TT}^1$$is$$\Pi ^1_1$$-conservative over the ordinary pigeonhole principle,$$\mathsf {RT}^1$$. Using the recently introduced notion of the first-order part of an instance-solution problem, we formulate the analog of this question for Weihrauch reducibility, and give an affirmative answer. In combination with other results, we use this to show that unlike$$\mathsf {RT}^1$$, the problem$$\mathsf {TT}^1$$is not Weihrauch requivalent to any first-order problem. Our proofs develop new combinatorial machinery for constructing and understanding solutions to instances of$$\mathsf {TT}^1$$.more » « less
An official website of the United States government

