skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Densification and Strengthening of Ferrous‐Based Powder Compacts Through Cold Sintering Aided Warm Compaction
Cold sintering of surface‐modified iron compacts results in a co‐continuous phosphate interphase between iron particles that provide both enhanced green strength and green density similar to the process that has been successfully introduced in low‐temperature densification of ceramic materials. Relative density as high as 95% along with transverse rupture strength of ≈ 75 MPa, which is almost six times that of conventional powdered metal iron compact and 2.5 times that of warm compacted controls, is achieved. Dilatometry study at different pressures shows a small but significant improvement in densification process during cold sintering relative to the larger densification of warm compacted control. Strength model based on microstructural analysis as well as in situ diffused reflectance infrared Fourier transform spectroscopy (DRIFTS) experiments reveals the nature of the interphase that imparts the large cohesive strength under the cold sintered assisted warm compaction. The process is conducive to produce iron compacts for green machining. Furthermore, the samples when subjected to high‐temperature sintering yield a fully sintered iron compact with density > 7.2 g cm−3and transverse rupture strength as high as 780 MPa. All in all, there are major new opportunities with the cold sintered assisted warm compaction of powdered metals that will also be discussed.  more » « less
Award ID(s):
2134643
PAR ID:
10502862
Author(s) / Creator(s):
; ; ; ; ; ;
Publisher / Repository:
Wiley
Date Published:
Journal Name:
Advanced Engineering Materials
Volume:
24
Issue:
12
ISSN:
1438-1656
Page Range / eLocation ID:
2200714
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Ceramics such as lead zirconate titanate (PZT) tend to dissolve incongruently, and thus pose a challenge in the cold sintering process. Moist lead nitrate has previously been shown to enable a cold sinter‐assisted densification of PZT by a viscous phase sintering mechanism. In this paper, lead acetate trihydrate is demonstrated to lower the required temperature of the cold sintering step to 200°C. This densification process was described as a two‐step process: cold sintering of PZT with lead acetate trihydrate and post‐annealing the as‐cold sintered PZT ceramics. Unlike in the case of lead nitrate, PZT densification with lead acetate trihydrate occurs by a liquid phase assisted sintering mechanism, leading to an as‐cold sintered relative density of 84% at 200°C. After performing a post‐anneal step at 900°C, >97% relative densities were achieved in samples that were cold sintered with lead acetate trihydrate. This step not only densified PZT but also refined the grain boundaries. In the post‐annealed samples, the room‐temperature relative permittivity at 100 Hz was ~1600, slightly higher than that reported in samples that used lead nitrate as a sintering aid; the loss tangent was about 3.8%. For measurements at 10 Hz, the remanent polarization in both cases was ~28 µC/cm2. Both Rayleigh analysis and aging studies showed that a higher irreversible contribution to the permittivity exists in samples that used lead nitrate as a cold sintering aid. 
    more » « less
  2. In powder metallurgy (PM), the compaction step is fundamental to determining the final properties of the sintered components. The deformation and defectiveness introduced in the powder material during uniaxial die compaction can be correlated to the activation and enhancement of the dislocation pipe diffusion, a lattice diffusion mechanism during the sintering process. Its coefficient depends on the dislocation density. The powder particles are mostly deformed along the direction of the compaction (longitudinal direction) rather than along the compaction plane; consequently, the contact areas perpendicular to the direction of the compaction present a higher density of dislocations and lattice defects. This high density intensifies the shrinkage along the direction of compaction. To demonstrate the influence of uniaxial cold compaction on the material’s stress state the powder particles and their contacts were modeled using spheres made of pure copper. These spheres are compacted in a die at different pressures to better analyze the system’s response at the grade of deformation and the consequent influence on the material’s behavior during the sintering. In the different zones of the sphere, the micro-hardness was measured and correlated to the concentration of dislocations using the model for indentation size effect (ISE). After the compaction, the spheres were more deformed along the longitudinal than the transversal direction. The results obtained using hardness indentation show differences in the dislocation density between the undeformed and deformed spheres and, in the case of the compacted sphere, between the contact area along the longitudinal and the transversal direction. 
    more » « less
  3. Cold sintering is an unusually low-temperature process that uses a transient transport phase, which is most often liquid, and an applied uniaxial force to assist in densification of a powder compact. By using this approach, many ceramic powders can be transformed to high-density monoliths at temperatures far below the melting point. In this article, we present a summary of cold sintering accomplishments and the current working models that describe the operative mechanisms in the context of other strategies for low-temperature ceramic densification. Current observations in several systems suggest a multiple-stage densification process that bears similarity to models that describe liquid phase sintering. We find that grain growth trends are consistent with classical behavior, but with activation energy values that are lower than observed for thermally driven processes. Densification behavior in these low-temperature systems is rich, and there is much to be investigated regarding mass transport within and across the liquid-solid interfaces that populate these ceramics during densification. Irrespective of mechanisms, these low temperatures create a new opportunity spectrum to design grain boundaries and create new types of nanocomposites among material combinations that previously had incompatible processing windows. Future directions are discussed in terms of both the fundamental science and engineering of cold sintering. 
    more » « less
  4. Study examines binder deposition methods (bulk vs. selective printing) and sintering atmospheres (vacuum vs. H2) on binder jetted 316 L stainless steel components. The density of the H2-sintered specimens was found to be lower (up to 5%) compared to the vacuum-sintered parts with the final density of 99.7%. Grain size analysis indicated smaller grains in the H2-sintered parts (∼26 μm) compared to vacuum-sintered condition (∼33 μm) in the bound area which could be attributed to the presence of residual pores that impeded grain growth. The H2-sintered specimens exhibited an elongation of 25% and an ultimate tensile strength (UTS) of 460 MPa, whereas the vacuum-sintered parts displayed an elongation of 70% and a UTS of 550 MPa. Fractography analysis using microscopy and micro-computed tomography revealed ductile fracture in the vacuum-sintered samples, while the H2-sintered parts exhibited a combination of brittle and ductile fracture due to remnant pores in the microstructure. 
    more » « less
  5. In binder jetting, shrinkage and deformation occur during the sintering step, both of which are affected by the green density of the binder jetted materials. The study innovatively introduces a cost-effective, practical, and in-process monitoring system for visualizing shrinkage and deformation on larger samples than conventionally observed using small-scale specimens in dillatometry equipment. The powder characteristics and binder jet printing process itself influence the initial green density. The comprehensive analysis of powder flowability and packing density, densification behavior, and shrinkage reveals that the consolidated parts using virgin powder (with a green density of 55%) can achieve a relative density above 99.9% with an anisotropic shrinkage in the Z>X>Y direction. In contrast, the used or recycled powder exhibits a lower green density of ∼48%, higher shrinkage rate in all three dimensions, and a decreased degree of anisotropy. Using in-process imaging and experimental data on the grain size attained through optical microscopy and electron backscatered diffraction imaging, the material's shear and bulk viscosities were determined. The formation of delta-ferrite and its impact on densification were discussed in the context of solid-state and supersolidus liquid phase sintering. The model relied on the continuum sintering theory formulated by Skorohod and Olevsky. The strain evolution from the in-situ imaging of sintering process is correlated with porosity based on the used feedstock and applied sintering temperatures. The outcomes of this study offer valuable perspectives on anisotropic sintering mechanisms, bridging the knowledge gap regarding the relationships between structures produced through binder jetting and subsequent sintering of materials. 
    more » « less