Abstract The Cold Sintering Process (CSP) can provide opportunities to fabricate high-performance BaTiO3dielectric composites with polymer materials that are typically difficult to impossible to co-process under a conventional sintering process. Therefore, we investigated the preparation process of BaTiO3sintered body by CSP and integrated a well-dispersed intergranular polymer phase. In this study, we focused on preparing BaTiO3and Polytetrafluoroethylene (PTFE) composites. We considered the importance of the particle size of the PTFE phase, and correlated the impact on the composite dielectric properties. Through fitting a general-mixing-law to the dielectric properties as a function of volume fraction, we could deduce more homogeneous composites obtained in using the 200 nm PTFE powders. In addition, the temperature dependent dielectric properties and field dependent conductivity of the composites was investigated. It was found that with the good dispersion of the PTFE can suppress the leakage current density in the dielectric composites.
more »
« less
This content will become publicly available on September 23, 2026
Silica‐assisted cold sintering of diopside for sustainable cementitious composites
Abstract This study explores cold sintering of naturally occurring minerals as supplementary cementitious materials (SCM) or cement analogs, which have the potential to transform the traditional high‐energy, high‐emission cement manufacturing pathways. Diopside (MgCaSi2O6), a natural inosilicate, is used as the model system. As diopside is hard for cold sintering directly (by itself), this study demonstrates that the addition of amorphous silica nanoparticles can enable cold sintering of diopside. The cold‐sintered diopside–silica composites are characterized by X‐ray diffraction, scanning electron microscopy, and transmission electron microscopy. The effect of the relative weight percentage of silica added is examined. The relative density of the cold‐sintered composite reaches nearly 90% at 400 MPa and 200°C in 60 min. For specimens with the addition of 30 wt% or more of amorphous SiO2, cold sintering also induces partial crystallization, converting a fraction of amorphous silica to quartz. The crystallization kinetics exhibits a stochastic nature. The Vickers hardness of the cold‐sintered diopside–silica composite increases with increasing amount of silica, whichpromotes cold sintering, reaching ∼3 GPa with 20 wt% or more silica. The diopside–silica composites studied here serve as a model system for metal‐leached silicate mine tailings, which are expected to have nanoporous amorphous silica shells on silicate particles to enable the silica‐assisted cold sintering mechanism discovered in this study.
more »
« less
- Award ID(s):
- 2328044
- PAR ID:
- 10637980
- Publisher / Repository:
- Wiley-Blackwell
- Date Published:
- Journal Name:
- Journal of the American Ceramic Society
- ISSN:
- 0002-7820
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
null (Ed.)Thermoelectric (TE) cement composite is a new type of TE material. Unlike ordinary cement, TE cement can mutually convert thermal energy to electrical energy due to the addition of carbon fibers, metal oxide nanoparticles, etc. In hot summer or cold winter, the significant temperature difference between indoor and outdoor can be used by TE cement to generate electricity. On the other hand, given power input, the same material can provide cooling/ heating to adjust room temperature. Therefore, TE cement has certain energy-saving potential in the application of building enclosures and energy systems. Its ability to convert different forms of energy and use low-grade energy is conducive to the operation of net-zero buildings. In this study, a novel TE cement composite, MnO2 and graphite enhanced cement, was firstly fabricated. The surface morphology of the composites was analyzed by using the images taken by scanning electron microscopy. The performance indicators of TE materials include the power factor and dimensionless figure of merit ZT The values of five TE properties were measured and calculated by a Physical Property Measurement System at different temperatures. Compared with the cement reinforced by graphite alone, it is confirmed that MnO2 nanoparticles have a positive effect on the enhancement of the TE performance for cement composites. The 5wt.% graphite and 10wt.% MnO2 enhanced cement composite achieves the highest Z.T. of 6.2 × 10-6 at 350 K.more » « less
-
Abstract While monazite (LaPO4) does not flash sinter even at high fields of 1130 V/cm and temperatures of 1450°C, composite systems of 8YSZ–LaPO4and Al2O3–LaPO4have been found to more readily flash sinter. 8YSZ added to LaPO4greatly lowered the furnace temperature for flash to 1100°C using a field of only 250 V/cm. In these experiments,‐Al2O3alone also did not flash sinter at 1450°C even with high fields of 1130 V/cm, but composites of Al2O3–LaPO4powders flash sintered at 900‐1080 V/cm at 1450°C. Alumina–monazite (Al2O3–LaPO4) composites with compositions ranging from 25 vol% to 75 vol% Al2O3were flash sintered with current limits from 2 to 25 mA/mm2. Microstructures were evaluated by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). A eutectic microstructure was observed to form in all flash sintered Al2O3–LaPO4composites. With higher power (higher current limits), eutectic structures with regular lamellar regions were found to coexist in the channeled region (where both the current and the temperature were the highest) with large hexagonal‐shaped‐Al2O3grains (up to 75 m) and large irregular LaPO4grains. With lower power (lower current limits), an irregular eutectic microstructure was dominant, and there was minimal abnormal grain growth. These results indicate that Al2O3–LaPO4is a eutectic‐forming system and the eutectic temperature was reached locally during flash sintering in regions. These eutectic microstructures with lamellar dimensions on the scale of 100 nm offer potential for improved mechanical properties.more » « less
-
Abstract Ceramics such as lead zirconate titanate (PZT) tend to dissolve incongruently, and thus pose a challenge in the cold sintering process. Moist lead nitrate has previously been shown to enable a cold sinter‐assisted densification of PZT by a viscous phase sintering mechanism. In this paper, lead acetate trihydrate is demonstrated to lower the required temperature of the cold sintering step to 200°C. This densification process was described as a two‐step process: cold sintering of PZT with lead acetate trihydrate and post‐annealing the as‐cold sintered PZT ceramics. Unlike in the case of lead nitrate, PZT densification with lead acetate trihydrate occurs by a liquid phase assisted sintering mechanism, leading to an as‐cold sintered relative density of 84% at 200°C. After performing a post‐anneal step at 900°C, >97% relative densities were achieved in samples that were cold sintered with lead acetate trihydrate. This step not only densified PZT but also refined the grain boundaries. In the post‐annealed samples, the room‐temperature relative permittivity at 100 Hz was ~1600, slightly higher than that reported in samples that used lead nitrate as a sintering aid; the loss tangent was about 3.8%. For measurements at 10 Hz, the remanent polarization in both cases was ~28 µC/cm2. Both Rayleigh analysis and aging studies showed that a higher irreversible contribution to the permittivity exists in samples that used lead nitrate as a cold sintering aid.more » « less
-
Abstract Low cost and high durability have made Portland cement the most widely‐used building material, but benefits are offset by environmental harm of cement production contributing 8–10% of total anthropogenic CO2gas emissions. High sulfur‐content materials (HSMs) are an alternative that can perform the binding roles as cements with a smaller carbon footprint, and possibly superior chemical, physical, and mechanical properties. Inverse vulcanization of 90 wt% sulfur with 10 wt% canola oil or sunflower oil to yield CanS or SunS, respectively. Notably, these HSMs prepared at temperatures ≤180 °C compared to >1200 °C hours for Portland cement CanS was combined with 5 wt% fly ash (FA), silica fume (SF), ground granulated blast furnace slag (GGBFS), or metakaolin (MK) to give composites CanS‐FA, CanS‐SF, CanS‐GGBFS, and CanS‐MK, respectively. The analogous protocol with SunS likewise yielded SunS‐FA, SunS‐SF, SunS‐GGBFS, and SunS‐MK. Each of these HSMs exhibit high compressive mechanical strength, low water uptake values, and exceptional resistance to acid‐induced corrosion. All of the composites also exhibit superior compressive strength retention after exposure to acidic solutions, conditions under which Portland cement undergoes dissolution. The polymer cement‐pozzolan composites reported herein may thus serve as greener alternatives to traditional Portland cement in some applications.more » « less
An official website of the United States government
