skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Combining Dependency, Grades, and Adjoint Logic
We propose two new dependent type systems. The first, is a dependent graded/linear type system where a graded dependent type system is connected via modal operators to a linear type system in the style of Linear/Non-linear logic. We then generalize this system to support many graded systems connected by many modal operators through the introduction of modes from Adjoint Logic. Finally, we prove several meta-theoretic properties of these two systems including graded substitution.  more » « less
Award ID(s):
2104535
PAR ID:
10502930
Author(s) / Creator(s):
;
Publisher / Repository:
ACM
Date Published:
ISBN:
9798400702990
Page Range / eLocation ID:
58 to 70
Subject(s) / Keyword(s):
adjoint logic, dependent types, graded types, linear logic, resource tracking, semantics
Format(s):
Medium: X
Location:
Seattle WA USA
Sponsoring Org:
National Science Foundation
More Like this
  1. Endrullis, Jörg; Schmitz, Sylvain (Ed.)
    Graded modal logics generalise standard modal logics via families of modalities indexed by an algebraic structure whose operations mediate between the different modalities. The graded "of-course" modality !_r captures how many times a proposition is used and has an analogous interpretation to the of-course modality from linear logic; the of-course modality from linear logic can be modelled by a linear exponential comonad and graded of-course can be modelled by a graded linear exponential comonad. Benton showed in his seminal paper on Linear/Non-Linear logic that the of-course modality can be split into two modalities connecting intuitionistic logic with linear logic, forming a symmetric monoidal adjunction. Later, Fujii et al. demonstrated that every graded comonad can be decomposed into an adjunction and a "strict action". We give a similar result to Benton, leveraging Fujii et al.’s decomposition, showing that graded modalities can be split into two modalities connecting a graded logic with a graded linear logic. We propose a sequent calculus, its proof theory and categorical model, and a natural deduction system which we show is isomorphic to the sequent calculus system. Interestingly, our system can also be understood as Linear/Non-Linear logic composed with an action that adds the grading, further illuminating the shared principles between linear logic and a class of graded modal logics. 
    more » « less
  2. null (Ed.)
    Graded Type Theory provides a mechanism to track and reason about resource usage in type systems. In this paper, we develop GraD, a novel version of such a graded dependent type system that includes functions, tensor products, additive sums, and a unit type. Since standard operational semantics is resource-agnostic, we develop a heap-based operational semantics and prove a soundness theorem that shows correct accounting of resource usage. Several useful properties, including the standard type soundness theorem, non-interference of irrelevant resources in computation and single pointer property for linear resources, can be derived from this theorem. We hope that our work will provide a base for integrating linearity, irrelevance and dependent types in practical programming languages like Haskell. 
    more » « less
  3. Graded Type Theory provides a mechanism to track and reason about resource usage in type systems. In this paper, we develop GraD, a novel version of such a graded dependent type system that includes functions, tensor products, additive sums, and a unit type. Since standard operational semantics is resource-agnostic, we develop a heap-based operational semantics and prove a soundness theorem that shows correct accounting of resource usage. Several useful properties, including the standard type soundness theorem, non-interference of irrelevant resources in computation and single pointer property for linear resources, can be derived from this theorem. We hope that our work will provide a base for integrating linearity, irrelevance and dependent types in practical programming languages like Haskell. 
    more » « less
  4. Alexeev, A.; Frenkel, E.; Rosso, M.; Webster, B.; Yakimov, M. (Ed.)
    We propose solutions of the quantum Q-systems of types BN,CN,DN in terms of q-difference operators, generalizing our previous construction for the Q- system of type A. The difference operators are interpreted as q-Whittaker limits of discrete time evolutions of Macdonald-van Diejen type operators. We conjecture that these new operators act as raising and lowering operators for q-Whittaker functions, which are special cases of graded characters of fusion products of KR- modules. 
    more » « less
  5. Mission-time Linear Temporal Logic (MLTL) represents the most practical fragment of Metric Temporal Logic; MLTL resembles the popular logic Linear Temporal Logic (LTL) with finite closed-interval integer bounds on the temporal operators. Increasingly, many tools reason over MLTL specifications, yet these tools are useful only when system designers can validate the input specifications. We design an automated characterization of the structure of the computations that satisfy a given MLTL formula using regular expressions. We prove soundness and completeness of our structure. We also give an algorithm for automated MLTL formula validation and analyze its complexity both theoretically and experimentally. Additionally, we generate a test suite using control flow diagrams to robustly test our implementation and release an open-source tool with a user-friendly graphical interface. The result of our contributions are improvements to existing algorithms for MLTL analysis, and are applicable to many other tools for automated, efficient MLTL formula validation. Our updated tool may be found at https://temporallogic.org/research/WEST. 
    more » « less