skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2104535

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Endrullis, Jörg; Schmitz, Sylvain (Ed.)
    Graded modal logics generalise standard modal logics via families of modalities indexed by an algebraic structure whose operations mediate between the different modalities. The graded "of-course" modality !_r captures how many times a proposition is used and has an analogous interpretation to the of-course modality from linear logic; the of-course modality from linear logic can be modelled by a linear exponential comonad and graded of-course can be modelled by a graded linear exponential comonad. Benton showed in his seminal paper on Linear/Non-Linear logic that the of-course modality can be split into two modalities connecting intuitionistic logic with linear logic, forming a symmetric monoidal adjunction. Later, Fujii et al. demonstrated that every graded comonad can be decomposed into an adjunction and a "strict action". We give a similar result to Benton, leveraging Fujii et al.’s decomposition, showing that graded modalities can be split into two modalities connecting a graded logic with a graded linear logic. We propose a sequent calculus, its proof theory and categorical model, and a natural deduction system which we show is isomorphic to the sequent calculus system. Interestingly, our system can also be understood as Linear/Non-Linear logic composed with an action that adds the grading, further illuminating the shared principles between linear logic and a class of graded modal logics. 
    more » « less
  2. We propose two new dependent type systems. The first, is a dependent graded/linear type system where a graded dependent type system is connected via modal operators to a linear type system in the style of Linear/Non-linear logic. We then generalize this system to support many graded systems connected by many modal operators through the introduction of modes from Adjoint Logic. Finally, we prove several meta-theoretic properties of these two systems including graded substitution. 
    more » « less
  3. Over twenty years ago, Abadi et al. established the Dependency Core Calculus (DCC) as a general purpose framework for analyzing dependency in typed programming languages. Since then, dependency analysis has shown many practical benefits to language design: its results can help users and compilers enforce security constraints, eliminate dead code, among other applications. In this work, we present a Dependent Dependency Calculus (DDC), which extends this general idea to the setting of a dependently-typed language. We use this calculus to track both run-time and compile-time irrelevance, enabling faster typechecking and program execution. 
    more » « less