skip to main content


Title: Chemical fuel energy driving polymerization towards porous carbon nitride for energy storage application
A chemical reaction network has been utilized as an energy and radical source to synthesize porous carbon nitride for energy storage applications.  more » « less
Award ID(s):
2000310
PAR ID:
10503075
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
RSC
Date Published:
Journal Name:
New Journal of Chemistry
Volume:
48
Issue:
4
ISSN:
1144-0546
Page Range / eLocation ID:
1607 to 1613
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Income-based energy poverty metrics ignore people’s behavior patterns, particularly reducing energy consumption to limit financial stress. We investigate energy-limiting behavior in low-income households using a residential electricity consumption dataset. We first determine the outdoor temperature at which households start using cooling systems, the inflection temperature. Our relative energy poverty metric, theenergy equity gap, is defined as the difference in the inflection temperatures between low and high-income groups. In our study region, we estimate the energy equity gap to be between 4.7–7.5 °F (2.6–4.2 °C). Within a sample of 4577 households, we found 86 energy-poor and 214 energy-insecure households. In contrast, the income-based energy poverty metric, energy burden (10% threshold), identified 141 households as energy-insecure. Only three households overlap between our energy equity gap and the income-based measure. Thus, the energy equity gap reveals a hidden but complementary aspect of energy poverty and insecurity.

     
    more » « less
  2. Energy insecurity poses a global challenge with far-reaching social equity and health implications. This paper provides a comprehensive perspective on the relationship between energy insecurity and health outcomes in developed countries. Existing research has identified associations between energy insecurity and various physical and mental health outcomes. Moreover, climate change can exacerbate the adverse health consequences of energy insecurity, disproportionately affecting vulnerable populations. Based on a review of existing literature, this paper identifies several knowledge gaps, proposes future research directions, and discusses data challenges faced by researchers in measuring energy insecurity and assessing the health impacts of existing programs that tackle energy insecurity. Furthermore, the paper highlights the importance of fostering collaboration among different governmental agencies and other sectors to enhance energy insecurity program management and data collection for program evaluation.

     
    more » « less
  3. Abstract

    In the quest to determine fault weakening processes that govern earthquake mechanics, it is common to infer the earthquake breakdown energy from seismological measurements. Breakdown energy is observed to scale with slip, which is often attributed to enhanced fault weakening with continued slip or at high slip rates, possibly caused by flash heating and thermal pressurization. However, seismologically inferred breakdown energy varies by more than six orders of magnitude and is frequently found to be negative-valued. This casts doubts about the common interpretation that breakdown energy is a proxy for the fracture energy, a material property which must be positive-valued and is generally observed to be relatively scale independent. Here, we present a dynamic model that demonstrates that breakdown energy scaling can occur despite constant fracture energy and does not require thermal pressurization or other enhanced weakening. Instead, earthquake breakdown energy scaling occurs simply due to scale-invariant stress drop overshoot, which may be affected more directly by the overall rupture mode – crack-like or pulse-like – rather than from a specific slip-weakening relationship.

     
    more » « less
  4. Mobile app energy profilers provide a foundational energy diagnostic tool by identifying energy hotspots in the app source code. However, they only tackle the first challenge faced by developers, as, after presented with the energy hotspots, developers typically do not have any guidance on how to proceed with the remaining optimization process: (1) Is there a more energy-efficient implementation for the same app task? (2) How to come up with the more efficient implementation? To help developers tackle these challenges, we developed a new energy profiling methodology called differential energy profiling that automatically uncovers more efficient implementations of common app tasks by leveraging existing implementations of similar apps which are bountiful in the app marketplace. To demonstrate its effectiveness, we implemented such a differential energy profiler, DIFFPROF, for Android apps and used it to profile 8 groups (from 6 popular app categories) of 5 similar apps each. Our extensive case studies show that DIFFPROF provides developers with actionable diagnosis beyond a traditional energy profiler: it identifies non-essential (unmatched or extra) and known-to-be inefficient (matched) tasks, and the call trees of tasks it extracts further allow developers to quickly understand the reasons and develop fixes for the energy difference with minor manual debugging efforts. 
    more » « less
  5. Energy-harvesting designs typically include highly entangled app-lication-level and energy-management subsystems that span both hardware and software. This tight integration makes developing sophisticated energy-harvesting systems challenging, as developers have to consider both embedded system development and intermit-tent energy management simultaneously. Even when successful, solutions are often monolithic, produce suboptimal performance, and require substantial effort to translate to a new design. Instead, we propose a new energy-harvesting power management architecture, Altair that offloads all energy-management operations to the power supply itself while making the power supply programmable. Altair introduces an energy supervisor and a standard interface to enable an abstraction layer between the power supply hardware and the running application, making both replaceable and recon-figurable. To ensure minimal resource conflict on the application processor, while running resource-hungry optimization techniques in the supervisor, we implement the Altair design in a lower power microcontroller that runs in parallel with the application. We also develop a programmable power supply module and a software library for seamless application development with Altair. We evaluate the versatility of the proposed architecture across a spectrum of IoT devices and demonstrate the generality of the plat-form. We also design and implement an online energy-management technique using reinforcement learning on top of the platform and compare the performance against fixed duty-cycle baselines. Results indicate that sensors running the online energy-manager perform similar to continuously powered sensors, have a l0x higher event generation rate than the intermittently powered ones, 1.8-7x higher event detection accuracy, experience 50% fewer power failures, and are 44% more available than the sensors that maintain a constant duty-cycle. 
    more » « less