skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2000310

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract This research aims to develop chitosan-zein protein films supplemented withBergenia ciliata(Bc) extract, a traditionally important medical herb of Himalayan origin. The film’s physicochemical, mechanical, antioxidant, and antimicrobial properties were systematically explored. The opacity of chitosan film increased from 2.42 ± 0.97 to 10.32 ± 1.44 upon introducing zein (Z) protein in chitosan (Cs) in a 1:2 ratio (w/w); conferring enhanced UV-blocking attributes. IncorporatingB. ciliataextracts in the chitosan-zein film (Cs-Z-Bc) under optimized conditions further increased the opacity to 16.27 ± 1.03 without compromising the tensile strength. The α-diphenyl-β-picrylhydrazyl scavenging activity of the Cs-Z-Bc film was found to be 97.07 ± 1.09%. Additionally, these optimized films displayed significant antimicrobial efficacy, with zones of inhibition of 11.4 mm measured for gram-positive strains likeC. subtilisandS. aureusand 11.2 mm and 11.1 mm forE. coliandK. pneumoniae(gram-negative) bacterial strains. The film also showed excellent biodegradable properties. The shelf life study of Himalayan cheese was significantly increased when wrapped with the film. These findings suggested thatB. ciliataextract-fortified chitosan-zein films can be an excellent food packaging material. 
    more » « less
    Free, publicly-accessible full text available August 12, 2026
  2. Abstract Hydrogen gas is a prominent focus in pursuing renewable and clean alternative energy sources. The quest for maximizing hydrogen production yield involves the exploration of an ideal photocatalyst and the development of a simple, cost‐effective technique for its generation. Iron titanate has garnered attention in this context due to its photocatalytic properties, affordability, and non‐toxic nature. Over the years, different synthesis routes, different morphologies, and some modifications of iron titanate have been carried out to improve its photocatalytic performance by enhancing light absorption in the visible region, boosting charge carrier transfer, and decreasing recombination of electrons and holes. The use of iron titanate photocatalyst for hydrogen evolution reaction has seen an upward trend in recent times, and based on available findings, more can be done to improve the performance. This review paper provides a comprehensive overview of the fundamental principles of photocatalysis for hydrogen generation, encompassing the synthesis, morphology, and application of iron titanate‐based photocatalysts. The discussion delves into the limitations of current methodologies and present and future perspectives for advancing iron titanate photocatalysts. By addressing these limitations and contemplating future directions, the aim is to enhance the properties of materials fabricated for photocatalytic water splitting. 
    more » « less
  3. Abstract Mesoporous honeycomb iron titanate using a sol‐gel, evaporation‐induced self‐assembly method is synthesized. A triblock copolymer, F127, serves as a structure‐directing agents, with iron chloride and titanium (IV) isopropoxide as inorganic precursors. The strong intermolecular force of attraction among urea, metal precursors, and polymer led to the formation of the mesoporous honeycomb structure. The study of physicochemical properties using different techniques reveals the formation of microstructures with a remarkable degree of porosity. The amorphous iron titanate outperforms the photochemical generation of H2due to its disorderly structural arrangement and incomplete crystal formation. The randomness on the structure provides more area for catalytic reaction by providing more contact with the reactant and superior light absorption capability. The high amount of hydrogen gas, 40.66 mmolg−1h−1, is observed in the investigation over 3 h of activity for the iron titanate honeycomb sample. This yield is a more significant amount compared to the obtained for the commercially available TiO2(23.78 mmolg−1h−1). The iron titanate materials synthesized with low‐cost materials and methods are very effective and have the potential for hydrogen generation. 
    more » « less
  4. Abstract A hierarchical nanocomposite of carbon microspheres decorated with tungsten oxide (WO3) nanocrystals resulted from the hydrothermal treatment of a precursor solution containing glucose and tungstic acid. The dehydration of glucose molecules formed oligosaccharides, which consequently carbonized, turning into carbon microspheres. The carbon microspheres then acted as a spherical nucleus onto which WO3nanocrystals grew via heterogeneous nucleation. The reaction product showed a phase junction of orthorhombic and monoclinic WO3,which transitioned to mix-phase of tetragonal and monoclinic WO3after a subsequent heat treatment at 600 °C in an inert condition. The electrochemical tests showed that incorporating WO3onto the carbon (WO3/C) resulted in a three-fold increase in the specific capacitance compared to WO3alone and a high coulombic and energy efficiencies of 98.2% and 92.8%, respectively. The nanocomposite exhibited supercapacitance with both Faradaic and non-Faradaic charge storage mechanisms. Electrochemical impedance spectroscopy showed a lower charge transfer resistance for the composite at Rct = 11.7Ω. 
    more » « less
  5. A chemical reaction network has been utilized as an energy and radical source to synthesize porous carbon nitride for energy storage applications. 
    more » « less