Compliant grasping is crucial for secure handling objects not only vary in shapes but also in mechanical properties. We propose a novel soft robotic gripper with decoupled stiffness and shape control capability for performing adaptive grasping with minimum system complexity. The proposed soft fingers conform to object shapes facilitating the handling of objects of different types, shapes, and sizes. Each soft gripper finger has a length constraining mechanism (an articulable rigid backbone) and is powered by pneumatic muscle actuators. We derive the kinematic model of the gripper and use an empirical approach to simultaneously map input pressures to stiffness control and bending deformation of fingers. We use these mappings to demonstrate decoupled stiffness and shape (bending) control of various grasping configurations. We conduct tests to quantify the grip quality when holding objects as the gripper changes orientation, the ability to maintain the grip as the gripper is subjected to translational and rotational movements, and the external force perturbations required to release the object from the gripper under various stiffness and shape (bending) settings. The results validate the proposed gripper's performance and show how the decoupled stiffness and shape control can improve the grasping quality in soft robotic grippers.
more »
« less
Active entanglement enables stochastic, topological grasping
Grasping, in both biological and engineered mechanisms, can be highly sensitive to the gripper and object morphology, as well as perception and motion planning. Here, we circumvent the need for feedback or precise planning by using an array of fluidically actuated slender hollow elastomeric filaments to actively entangle with objects that vary in geometric and topological complexity. The resulting stochastic interactions enable a unique soft and conformable grasping strategy across a range of target objects that vary in size, weight, and shape. We experimentally evaluate the grasping performance of our strategy and use a computational framework for the collective mechanics of flexible filaments in contact with complex objects to explain our findings. Overall, our study highlights how active collective entanglement of a filament array via an uncontrolled, spatially distributed scheme provides options for soft, adaptable grasping.
more »
« less
- Award ID(s):
- 2011754
- PAR ID:
- 10503208
- Publisher / Repository:
- PNAS
- Date Published:
- Journal Name:
- Proceedings of the National Academy of Sciences
- Volume:
- 119
- Issue:
- 42
- ISSN:
- 0027-8424
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
null (Ed.)Compliant grasping is crucial for secure handling objects not only vary in shapes but also in mechanical properties. We propose a novel soft robotic gripper with decoupled stiffness and shape control capability for performing adaptive grasping with minimum system complexity. The proposed soft fingers conform to object shapes facilitating the handling of objects of different types, shapes, and sizes. Each soft gripper finger has a length constraining mechanism (an articulable rigid backbone) and is powered by pneumatic muscle actuators. We derive the kinematic model of the gripper and use an empirical approach to simultaneously map input pressures to stiffness control and bending deformation of fingers. We use these mappings to demonstrate decoupled stiffness and shape (bending) control of various grasping configurations. We conduct tests to quantify the grip quality when holding objects as the gripper changes orientation, the ability to maintain the grip as the gripper is subjected to translational and rotational movements, and the external force perturbations required to release the object from the gripper under various stiffness and shape (bending) settings. The results validate the proposed gripper’s performance and show how the decoupled stiffness and shape control can improve the grasping quality in soft robotic grippers.more » « less
-
The ability to grab, hold, and manipulate objects is a vital and fundamental operation in biological and engineering systems. Here, we present a soft gripper using a simple material system that enables precise and rapid grasping, and can be miniaturized, modularized, and remotely actuated. This soft gripper is based on kirigami shells—thin, elastic shells patterned with an array of cuts. The kirigami cut pattern is determined by evaluating the shell’s mechanics and geometry, using a combination of experiments, finite element simulations, and theoretical modeling, which enables the gripper design to be both scalable and material independent. We demonstrate that the kirigami shell gripper can be readily integrated with an existing robotic platform or remotely actuated using a magnetic field. The kirigami cut pattern results in a simple unit cell that can be connected together in series, and again in parallel, to create kirigami gripper arrays capable of simultaneously grasping multiple delicate and slippery objects. These soft and lightweight grippers will have applications in robotics, haptics, and biomedical device design.more » « less
-
Soft robotics has yielded numerous examples of soft grippers that utilize compliance to achieve impressive grasping performances with great simplicity, adaptability, and robustness. Designing soft grippers with substantial grasping strength while remaining compliant and gentle is one of the most important challenges in this field. In this paper, we present a light-weight, vacuum-driven soft robotic gripper made of an origami “magic-ball” and a flexible thin membrane. We also describe the design and fabrication method to rapidly manufacture the gripper with different combinations of low- cost materials for diverse applications. Grasping experiments demonstrate that our gripper can lift a large variety of objects, including delicate foods, heavy bottles, and other miscellaneous items. The grasp force on 3D-printed objects is also characterized through mechanical load tests. The results reveal that our soft gripper can produce significant grasp force on various shapes using negative pneumatic pressure (vacuum). This new gripper holds the potential for many practical applications that require safe, strong, and simple grasping.more » « less
-
Dexterous manipulation, especially of small daily objects, continues to pose complex challenges in robotics. This paper introduces the DenseTact-Mini, an optical tactile sensor with a soft, rounded, smooth gel surface and compact design equipped with a synthetic fingernail. We propose three distinct grasping strategies: tap grasping using adhesion forces such as electrostatic and van der Waals, fingernail grasping leveraging rolling/sliding contact between the object and fingernail, and fingertip grasping with two soft fingertips. Through comprehensive evaluations, the DenseTact-Mini demonstrates a lifting success rate exceeding 90.2% when grasping various objects, including items such as 1mm basil seeds, thin paperclips, and items larger than 15mm such as bearings. This work demonstrates the potential of soft optical tactile sensors for dexterous manipulation and grasping.more » « less
An official website of the United States government

