skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: The Space of Equidistant Phylogenetic Cactuses
An equidistant X-cactus is a type of rooted, arc-weighted, directed acyclic graph with leaf set X, that is used in biology to represent the evolutionary history of a set X of species. In this paper, we introduce and investigate the space of equidistant X-cactuses. This space contains, as a subset, the space of ultrametric trees on X that was introduced by Gavryushkin and Drummond. We show that equidistant-cactus space is a CAT(0)-metric space which implies, for example, that there are unique geodesic paths between points. As a key step to proving this, we present a combinatorial result concerning ranked rooted X-cactuses. In particular, we show that such graphs can be encoded in terms of a pairwise compatibility condition arising from a poset of collections of pairs of sub- sets of X that satisfy certain set-theoretic properties. As a corollary, we also obtain an encoding of ranked, rooted X-trees in terms of partitions of X, which provides an alternative proof that the space of ultrametric trees on X is CAT(0). We expect that our results will provide the basis for novel ways to perform statistical analyses on collections of equidistant X-cactuses, as well as new directions for defining and understanding spaces of more general, arc-weighted phylogenetic networks.  more » « less
Award ID(s):
1847271
PAR ID:
10503311
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
Springer
Date Published:
Journal Name:
Annals of Combinatorics
Volume:
28
Issue:
1
ISSN:
0218-0006
Page Range / eLocation ID:
1 to 32
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Summary Rooted and ranked phylogenetic trees are mathematical objects that are useful in modelling hierarchical data and evolutionary relationships with applications to many fields such as evolutionary biology and genetic epidemiology. Bayesian phylogenetic inference usually explores the posterior distribution of trees via Markov chain Monte Carlo methods. However, assessing uncertainty and summarizing distributions remains challenging for these types of structures. While labelled phylogenetic trees have been extensively studied, relatively less literature exists for unlabelled trees that are increasingly useful, for example when one seeks to summarize samples of trees obtained with different methods, or from different samples and environments, and wishes to assess the stability and generalizability of these summaries. In our paper, we exploit recently proposed distance metrics of unlabelled ranked binary trees and unlabelled ranked genealogies, or trees equipped with branch lengths, to define the Fréchet mean, variance and interquartile sets as summaries of these tree distributions. We provide an efficient combinatorial optimization algorithm for computing the Fréchet mean of a sample or of distributions on unlabelled ranked tree shapes and unlabelled ranked genealogies. We show the applicability of our summary statistics for studying popular tree distributions and for comparing the SARS-CoV-2 evolutionary trees across different locations during the COVID-19 epidemic in 2020. Our current implementations are publicly available at https://github.com/RSamyak/fmatrix. 
    more » « less
  2. We show that metric trees and their products meet the octahedron comparison, which is a certain six-point metric comparison similar to Alexandrov’s CAT(0) comparison. 
    more » « less
  3. Colijn and Plazzotta (2018) [1] described a bijective scheme for associating the unlabeled bifurcating rooted trees with the positive integers. In mathematical and biological applications of unlabeled rooted trees, however, nodes of rooted trees are sometimes multifurcating rather than bifurcating. Building on the bijection between the unlabeled bifurcating rooted trees and the positive integers, we describe bijective schemes for associating the unlabeled multifurcating rooted trees with the positive integers. We devise bijections with the positive integers for a set of trees in which each non-leaf node has exactly k child nodes, and for a set of trees in which each non-leaf node has at most k child nodes. The calculations make use of Macaulay's binomial expansion formula. The generalization to multifurcating trees can assist with the use of unlabeled trees for applications in evolutionary biology, such as the measurement of phylogenetic patterns of genetic lineages in pathogens. 
    more » « less
  4. Abstract Rooted binarygalledtrees generalize rooted binary trees to allow a restricted class of cycles, known asgalls. We build upon the Wedderburn-Etherington enumeration of rooted binary unlabeled trees withnleaves to enumerate rooted binary unlabeled galled trees withnleaves, also enumerating rooted binary unlabeled galled trees withnleaves andggalls,$$0 \leqslant g \leqslant \lfloor \frac{n-1}{2} \rfloor $$ 0 g n - 1 2 . The enumerations rely on a recursive decomposition that considers subtrees descended from the nodes of a gall, adopting a restriction on galls that amounts to considering only the rooted binarynormalunlabeled galled trees in our enumeration. We write an implicit expression for the generating function encoding the numbers of trees for alln. We show that the number of rooted binary unlabeled galled trees grows with$$0.0779(4.8230^n)n^{-\frac{3}{2}}$$ 0.0779 ( 4 . 8230 n ) n - 3 2 , exceeding the growth$$0.3188(2.4833^n)n^{-\frac{3}{2}}$$ 0.3188 ( 2 . 4833 n ) n - 3 2 of the number of rooted binary unlabeled trees without galls. However, the growth of the number of galled trees with only one gall has the same exponential order 2.4833 as the number with no galls, exceeding it only in the subexponential term,$$0.3910n^{\frac{1}{2}}$$ 0.3910 n 1 2 compared to$$0.3188n^{-\frac{3}{2}}$$ 0.3188 n - 3 2 . For a fixed number of leavesn, the number of gallsgthat produces the largest number of rooted binary unlabeled galled trees lies intermediate between the minimum of$$g=0$$ g = 0 and the maximum of$$g=\lfloor \frac{n-1}{2} \rfloor $$ g = n - 1 2 . We discuss implications in mathematical phylogenetics. 
    more » « less
  5. Ultrametric matrices appear in many domains of mathematics and science; nevertheless, they can be large and dense, making them difficult to store and manipulate, unlike large but sparse matrices. In this manuscript, we exploit that ultrametric matrices can be represented as binary trees to sparsify them via an orthonormal base change based on Haar-like wavelets. We show that, with overwhelmingly high probability, only an asymptotically negligible fraction of the off-diagonal entries in random but large ultrametric matrices remain non-zero after the base change; and develop an algorithm to sparsify such matrices directly from their tree representation. We also identify the subclass of matrices diagonalized by the Haar-like wavelets and supply a sufficient condition to approximate the spectrum of ultrametric matrices outside this subclass. Our methods give computational access to a covariance matrix model of the microbiologists’ Tree of Life, which was previously inaccessible due to its size, and motivate introducing a new wavelet-based (beta-diversity) metric to compare microbial environments. Unlike the established metrics, the new metric may be used to identify internal nodes (i.e. splits) in the Tree that link microbial composition and environmental factors in a statistically significant manner. 
    more » « less