Synopsis Insects must fly in highly variable natural environments filled with gusts, vortices, and other transient aerodynamic phenomena that challenge flight stability. Furthermore, the aerodynamic forces that support insect flight are produced from rapidly oscillating wings of time-varying orientation and configuration. The instantaneous flight forces produced by these wings are large relative to the average forces supporting body weight. The magnitude of these forces and their time-varying direction add another challenge to flight stability, because even proportionally small asymmetries in timing or magnitude between the left and right wings may be sufficient to produce large changes in body orientation. However, these same large-magnitude oscillating forces also offer an opportunity for unexpected flight stability through nonlinear interactions between body orientation, body oscillation in response to time-varying inertial and aerodynamic forces, and the oscillating wings themselves. Understanding the emergent stability properties of flying insects is a crucial step toward understanding the requirements for evolution of flapping flight and decoding the role of sensory feedback in flight control. Here, we provide a brief review of insect flight stability, with some emphasis on stability effects brought about by oscillating wings, and present some preliminary experimental data probing some aspects of flight stability in free-flying insects.
more »
« less
Why flying insects gather at artificial light
Abstract Explanations of why nocturnal insects fly erratically around fires and lamps have included theories of “lunar navigation” and “escape to the light”. However, without three-dimensional flight data to test them rigorously, the cause for this odd behaviour has remained unsolved. We employed high-resolution motion capture in the laboratory and stereo-videography in the field to reconstruct the 3D kinematics of insect flights around artificial lights. Contrary to the expectation of attraction, insects do not steer directly toward the light. Instead, insects turn their dorsum toward the light, generating flight bouts perpendicular to the source. Under natural sky light, tilting the dorsum towards the brightest visual hemisphere helps maintain proper flight attitude and control. Near artificial sources, however, this highly conserved dorsal-light-response can produce continuous steering around the light and trap an insect. Our guidance model demonstrates that this dorsal tilting is sufficient to create the seemingly erratic flight paths of insects near lights and is the most plausible model for why flying insects gather at artificial lights.
more »
« less
- Award ID(s):
- 1750833
- PAR ID:
- 10503365
- Publisher / Repository:
- Nature Portfolio
- Date Published:
- Journal Name:
- Nature Communications
- Volume:
- 15
- Issue:
- 1
- ISSN:
- 2041-1723
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Synopsis Flight muscle histolysis is a widespread strategy used by insects to break down functional flight muscle and modulate the energetic costs associated with flight muscle use and maintenance. The variable field cricket, Gryllus lineaticeps, undergoes histolysis during their transition between dispersal flight and reproduction. Despite the importance of histolysis on insect reproduction and fitness, the molecular mechanisms driving this flight muscle breakdown are not well understood. Here, we show that beclin-mediated autophagy, a conserved lysosomal-dependent degradation process, drives breakdown of dorsal longitudinal flight muscle in female flight-capable G. lineaticeps. We found that female G. lineaticeps activate autophagy in their dorsal longitudinal flight muscle (DLM), but to a greater extent than the neighboring dorsoventral flight muscle (DVM) during histolysis. RNA interference knockdown of beclin, a gene that encodes a critical autophagy initiation protein, delayed DLM histolysis, but did not affect DVM histolysis. This suggests that crickets selectively activate autophagy to break down the DLMs, while maintaining DVM function for other fitness-relevant activities such as walking. Overall, we confirmed that autophagy is a critical pathway used to remodel flight muscle cells during flight muscle histolysis, providing novel insights into the mechanisms underlying a major life history transition between dispersal and reproduction.more » « less
-
Abstract Since taking flight, insects have undergone repeated evolutionary transitions between two seemingly distinct flight modes1–3. Some insects neurally activate their muscles synchronously with each wingstroke. However, many insects have achieved wingbeat frequencies beyond the speed limit of typical neuromuscular systems by evolving flight muscles that are asynchronous with neural activation and activate in response to mechanical stretch2–8. These modes reflect the two fundamental ways of generating rhythmic movement: time-periodic forcing versus emergent oscillations from self-excitation8–10. How repeated evolutionary transitions have occurred and what governs the switching between these distinct modes remain unknown. Here we find that, despite widespread asynchronous actuation in insects across the phylogeny3,6, asynchrony probably evolved only once at the order level, with many reversions to the ancestral, synchronous mode. A synchronous moth species, evolved from an asynchronous ancestor, still preserves the stretch-activated muscle physiology. Numerical and robophysical analyses of a unified biophysical framework reveal that rather than a dichotomy, these two modes are two regimes of the same dynamics. Insects can transition between flight modes across a bridge in physiological parameter space. Finally, we integrate these two actuation modes into an insect-scale robot11–13that enables transitions between modes and unlocks a new self-excited wingstroke strategy for engineered flight. Together, this framework accounts for repeated transitions in insect flight evolution and shows how flight modes can flip with changes in physiological parameters.more » « less
-
Abstract Aquatic insects use polarized light as a reliable visual cue for locating water surfaces given their need to locate sites for oviposition. However, many man-made surfaces polarize light more strongly than natural waterbodies creating an evolutionary trap in which many species preferentially lay their eggs on these polarizing artificial surfaces. Previous work has shown that the attractiveness of artificial surfaces to aquatic insects is diminished by adding non-polarizing gridlines to these surfaces. However, it is unknown how this mitigation affects aquatic insect preferences. We tested two alternative hypotheses about how aquatic insects judge the quality of potential oviposition sites. The visual averaging hypothesis states that insects judge the quality of a surface based on the percent area of the surface that is polarizing. An alternative hypothesis is that the quality of a polarizing surface is judged by the degree to which it is fragmented by non-polarizing elements. This experiment was conducted using oil tray traps as artificial polarizers whose percentage of polarizing area and the presence/absence of fragmentation was manipulated. Only Diptera were captured in sufficient numbers to test the hypotheses. Our findings for the dominant family in our captures, Dolichopodidae, were consistent with the visual averaging hypothesis – increasing the percent area that was non-polarizing significantly decreased captures, but the fragmentation of a polarizing surface had no significant effect on the number captured. For the other families of aquatic Diptera combined, however, there was a complex interactive effect of percent area of a surface that was polarizing and its fragmentation by non-polarizing gridlines. For the conservation of aquatic insects, these findings support the effectiveness of reducing the attractiveness of artificial polarizing surfaces such as solar panels by adding non-polarizing elements, but also show that for some aquatic insects, it is important to consider if the non-polarizing elements fragment the surface.more » « less
-
Abstract Insects rely on their olfactory system to forage, prey, and mate. They can sense odorant plumes emitted from sources of their interests with their bilateral odorant antennae, and track down odor sources using their highly efficient flapping-wing mechanism. The odor-tracking process typically consists of two distinct behaviors: surging upwind at higher velocity and zigzagging crosswind at lower velocity. Despite extensive numerical and experimental studies on odor guided flight in insects, we have limited understandings on the effects of flight velocity on odor plume structure and its associated odor perception. In this study, a fully coupled three-way numerical solver is developed, which solves the 3D Navier-Stokes equations coupled with equations of motion for the passive flapping wings, and the odorant convection-diffusion equation. This numerical solver is applied to resolve the unsteady flow field and the odor plume transport for a fruit fly model at different flight velocities in terms of reduced frequency. Our results show that the odor plume structure and intensity are strong related to reduced frequency. At smaller reduced frequency (larger forward velocity), odor plume is pushed up during downstroke and draw back during upstroke. At larger reduced frequency (smaller forward velocity), the flapping wings induce a shield-like air flow around the antennae which may greatly increase the odor sampling range. Our finding may explain why flight velocity is important in odor guided flight.more » « less
An official website of the United States government

