skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Enabling Timely and Persistent Deletion in LSM-Engines
Data-intensive applications have fueled the evolution oflog-structured merge (LSM)based key-value engines that employ theout-of-placeparadigm to support high ingestion rates with low read/write interference. These benefits, however, come at the cost oftreating deletes as second-class citizens. A delete operation inserts atombstonethat invalidates older instances of the deleted key. State-of-the-art LSM-engines do not provide guarantees as to how fast a tombstone will propagate topersist the deletion. Further, LSM-engines only support deletion on the sort key. To delete on another attribute (e.g., timestamp), the entire tree is read and re-written, leading to undesired latency spikes and increasing the overall operational cost of a database. Efficient and persistent deletion is key to support: (i) streaming systems operating on a window of data, (ii) privacy with latency guarantees on data deletion, and (iii)en massecloud deployment of data systems. Further, we document that LSM-based key-value engines perform suboptimally in the presence of deletes in a workload. Tombstone-driven logical deletes, by design, are unable to purge the deleted entries in a timely manner, and retaining the invalidated entries perpetually affects the overall performance of LSM-engines in terms of space amplification, write amplification, and read performance. Moreover, the potentially unbounded latency for persistent deletes brings in critical privacy concerns in light of the data privacy protection regulations, such as theright to be forgottenin EU’s GDPR, theright to deletein California’s CCPA and CPRA, anddeletion rightin Virginia’s VCDPA. Toward this, we introduce the delete design space for LSM-trees and highlight the performance implications of the different classes of delete operations. To address these challenges, in this article, we build a new key-value storage engine,Lethe+, that uses a very small amount of additional metadata, a set of new delete-aware compaction policies, and a new physical data layout that weaves the sort and the delete key order. We show thatLethe+supports any user-defined threshold for the delete persistence latency offeringhigher read throughput(1.17× -1.4×) andlower space amplification(2.1× -9.8×), with a modest increase in write amplification (between 4% and 25%) that can be further amortized to less than 1%. In addition,Lethe+supports efficient range deletes on asecondary delete keyby dropping entire data pages without sacrificing read performance or employing a costly full tree merge.  more » « less
Award ID(s):
2144547
PAR ID:
10503451
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
ACM
Date Published:
Journal Name:
ACM Transactions on Database Systems
Volume:
48
Issue:
3
ISSN:
0362-5915
Page Range / eLocation ID:
1 to 40
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Data-intensive applications fueled the evolution of log structured merge (LSM) based key-value engines that employ the out-of-place paradigm to support high ingestion rates with low read/write interference. These benefits, however, come at the cost of treating deletes as a second-class citizen. A delete inserts a tombstone that invalidates older instances of the deleted key. State-of-the-art LSM engines do not provide guarantees as to how fast a tombstone will propagate to persist the deletion. Further, LSM engines only support deletion on the sort key. To delete on another attribute (e.g., timestamp), the entire tree is read and re-written. We highlight that fast persistent deletion without affecting read performance is key to support: (i) streaming systems operating on a window of data, (ii) privacy with latency guarantees on the right-to-be-forgotten, and (iii) en masse cloud deployment of data systems that makes storage a precious resource. To address these challenges, in this paper, we build a new key-value storage engine, Lethe, that uses a very small amount of additional metadata, a set of new delete-aware compaction policies, and a new physical data layout that weaves the sort and the delete key order. We show that Lethe supports any user-defined threshold for the delete persistence latency offering higher read throughput (1.17-1.4x) and lower space amplification (2.1-9.8x), with a modest increase in write amplification (between 4% and 25%). In addition, Lethe supports efficient range deletes on a secondary delete key by dropping entire data pages without sacrificing read performance nor employing a costly full tree merge. 
    more » « less
  2. Computer systems utilizing byte-addressable Non-Volatile Memory ( NVM ) as memory/storage can provide low-latency data persistence. The widely used key-value stores using Log-Structured Merge Tree ( LSM-Tree ) are still beneficial for NVM systems in aspects of the space and write efficiency. However, the significant write amplification introduced by the leveled compaction of LSM-Tree degrades the write performance of the key-value store and shortens the lifetime of the NVM devices. The existing studies propose new compaction methods to reduce write amplification. Unfortunately, they result in a relatively large read amplification. In this article, we propose NVLSM, a key-value store for NVM systems using LSM-Tree with new accumulative compaction. By fully utilizing the byte-addressability of NVM, accumulative compaction uses pointers to accumulate data into multiple floors in a logically sorted run to reduce the number of compactions required. We have also proposed a cascading searching scheme for reads among the multiple floors to reduce read amplification. Therefore, NVLSM reduces write amplification with small increases in read amplification. We compare NVLSM with key-value stores using LSM-Tree with two other compaction methods: leveled compaction and fragmented compaction. Our evaluations show that NVLSM reduces write amplification by up to 67% compared with LSM-Tree using leveled compaction without significantly increasing the read amplification. In write-intensive workloads, NVLSM reduces the average latency by 15.73%–41.2% compared to other key-value stores. 
    more » « less
  3. Log-structured merge (LSM) trees offer efficient ingestion by appending incoming data, and thus, are widely used as the storage layer of production NoSQL data stores. To enable competitive read performance, LSM-trees periodically re-organize data to form a tree with levels of exponentially increasing capacity, through iterative compactions. Compactions fundamentally influence the performance of an LSM-engine in terms of write amplification, write throughput, point and range lookup performance, space amplification, and delete performance. Hence, choosing the appropriate compaction strategy is crucial and, at the same time, hard as the LSM-compaction design space is vast, largely unexplored, and has not been formally defined in the literature. As a result, most LSM-based engines use a fixed compaction strategy, typically hand-picked by an engineer, which decides how and when to compact data. In this paper, we present the design space of LSM-compactions, and evaluate state-of-the-art compaction strategies with respect to key performance metrics. Toward this goal, our first contribution is to introduce a set of four design primitives that can formally define any compaction strategy: (i) the compaction trigger, (ii) the data layout, (iii) the compaction granularity, and (iv) the data movement policy. Together, these primitives can synthesize both existing and completely new compaction strategies. Our second contribution is to experimentally analyze 10 compaction strategies. We present 12 observations and 7 high-level takeaway messages, which show how LSM systems can navigate the compaction design space. 
    more » « less
  4. Many key-value stores and database systems use log-structured merge-trees (LSM-trees) as their storage engines because of their excellent write performance. However, the read performance of LSM-trees is suboptimal due to the overlapping sorted runs. Most existing efforts rely on filters to reduce unnecessary I/Os, but filters fundamentally do not help locate items and often become the bottleneck of the system. We identify that the lack of efficient index is the root cause of subpar read performance in LSM-trees. In this paper, we propose Disco: a compact index for LSM-trees. Disco indexes all the keys in an LSM-tree, so a query does not have to search every run of the LSM-tree. It records compact key representations to minimize the number of key comparisons so as to minimize cache misses and I/Os for both point and range queries. Disco guarantees that both point queries and seeks issue at most one I/O to the underlying runs, achieving an I/O efficiency close to a B+-tree. Disco improves upon REMIX's pioneering multi-run index design with additional compact key representations to help improve read performance. The representations are compact so the cost of persisting Disco to disk is small. Moreover, while a traditional LSM-tree has to choose a more aggressive compaction policy that slows down write performance to have better read performance, a Disco-indexed LSM-tree can employ a write-efficient policy and still have good read performance. Experimental results show that Disco can save I/Os and improve point and range query performance by up to 220% over RocksDB while maintaining efficient writes. 
    more » « less
  5. null (Ed.)
    Abstract Modern NoSQL database systems use log-structured merge (LSM) storage architectures to support high write throughput. LSM architectures aggregate writes in a mutable MemTable (stored in memory), which is regularly flushed to disk, creating a new immutable file called an SSTable . Some of the SSTables are chosen to be periodically merged —replaced with a single SSTable containing their union. A merge policy (a.k.a. compaction policy) specifies when to do merges and which SSTables to combine. A bounded depth merge policy is one that guarantees that the number of SSTables never exceeds a given parameter k , typically in the range 3–10. Bounded depth policies are useful in applications where low read latency is crucial, but they and their underlying combinatorics are not yet well understood. This paper compares several bounded depth policies, including representative policies from industrial NoSQL databases and two new ones based on recent theoretical modeling, as well as the standard Tiered policy and Leveled policy. The results validate the proposed theoretical model and show that, compared to the existing policies, the newly proposed policies can have substantially lower write amplification with comparable read amplification. 
    more » « less