skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Non-invasive low-cost deep tissue blood flow measurement with integrated Diffuse Speckle Contrast Spectroscopy
Diffuse Correlation Spectroscopy (DCS) is a widely used non-invasive measurement technique to quantitatively measure deep tissue blood flow. Conventional implementations of DCS use expensive single photon counters as detecting elements and optical probes with bulky fiber optic cables. In recent years, newer approaches to blood flow measurement such as Diffuse Speckle Contrast Analysis (DSCA) and Speckle Contrast Optical Spectroscopy (SCOS), have adapted speckle contrast analysis methods to simplify deep tissue blood flow measurements using cameras and single photon counting avalanche detector arrays as detectors. Here, we introduce and demonstrate integrated Diffuse Speckle Contrast Spectroscopy (iDSCS), a novel optical sensor setup which leverages diffuse speckle contrast analysis for probe-level quantitative measurement of tissue blood flow. iDSCS uses a standard photodiode configured in photovoltaic mode to integrate photon intensity fluctuations over multiple integration durations using a custom electronic circuit, as opposed to the high frequency sampling of photon counts with DCS. We show that the iDSCS device is sensitive to deep-tissue blood flow measurements with experiments on a human forearm and compare the sensitivity and dynamic range of the device to a conventional DCS instrument. The iDSCS device features a low-cost, low-power, small form factor instrument design that will enable wireless probe-level measurements of deep tissue blood flow.  more » « less
Award ID(s):
2239675
PAR ID:
10503454
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
Frontiers
Date Published:
Journal Name:
Frontiers in Neuroergonomics
Volume:
4
ISSN:
2673-6195
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Laser speckle contrast imaging is widely used in clinical studies to monitor blood flow distribution. Speckle contrast tomography, similar to diffuse optical tomography, extends speckle contrast imaging to provide deep tissue blood flow information. However, the current speckle contrast tomography techniques suffer from poor spatial resolution and involve both computation and memory intensive reconstruction algorithms. In this work, we present SpeckleCam, a camera-based system to reconstruct high resolution 3D blood flow distribution deep inside the skin. Our approach replaces the traditional forward model using diffuse approximations with Monte-Carlo simulations-based convolutional forward model, which enables us to develop an improved deep tissue blood flow reconstruction algorithm. We show that our proposed approach can recover complex structures up to 6 mm deep inside a tissue-like scattering medium in the reflection geometry. We also conduct human experiments to demonstrate that our approach can detect reduced flow in major blood vessels during vascular occlusion. 
    more » « less
  2. Significance: Laparoscopic surgery presents challenges in localizing oncological margins due to poor contrast between healthy and malignant tissues. Optical properties can uniquely identify various tissue types and disease states with high sensitivity and specificity, making it a promising tool for surgical guidance. Although spatial frequency domain imaging (SFDI) effectively measures quantitative optical properties, its deployment in laparoscopy is challenging due to the constrained imaging environment. Thus, there is a need for compact structured illumination techniques to enable accurate, quantitative endogenous contrast in minimally invasive surgery. Aim: We introduce a compact, two-camera laparoscope that incorporates both active stereo depth estimation and speckle-illumination SFDI (si-SFDI) to map profile-corrected, pixel-level absorption (μa), and reduced scattering (μ′s) optical properties in images of tissues with complex geometries. Approach: We used a multimode fiber-coupled 639-nm laser illumination to generate high-contrast speckle patterns on the object. These patterns were imaged through a modified commercial stereo laparoscope for optical property estimation via si-SFDI. Compared with the original si-SFDI work, which required ≥10 images of randomized speckle patterns for accurate optical property estimations, our approach approximates the DC response using a laser speckle reducer (LSR) and consequently requires only two images. In addition, we demonstrate 3D profilometry using active stereo from low-coherence RGB laser flood illumination. Sample topography was then used to correct for measured intensity variations caused by object height and surface angle differences with respect to a calibration phantom. The low-contrast RGB speckle pattern was blurred using an LSR to approximate incoherent white light illumination. We validated profile-corrected si-SFDI against conventional SFDI in phantoms with simple and complex geometries, as well as in a human finger in vivo time-series constriction study. Results: Laparoscopic si-SFDI optical property measurements agreed with conventional SFDI measurements when measuring flat tissue phantoms, exhibiting an error of 6.4% for absorption and 5.8% for reduced scattering. Profile-correction improved the accuracy for measurements of phantoms with complex geometries, particularly for absorption, where it reduced the error by 23.7%. An in vivo finger constriction study further validated laparoscopic si-SFDI, demonstrating an error of 8.2% for absorption and 5.8% for reduced scattering compared with conventional SFDI. Moreover, the observed trends in optical properties due to physiological changes were consistent with previous studies. Conclusions: Our stereo-laparoscopic implementation of si-SFDI provides a simple method to obtain accurate optical property maps through a laparoscope for flat and complex geometries. This has the potential to provide quantitative endogenous contrast for minimally invasive surgical guidance. 
    more » « less
  3. Complex multiscale flows associated with instabilities and turbulence are commonly induced under high-energy density (HED) conditions, but accurate measurement of their transport properties has been challenging. x-ray photon correlation spectroscopy (XPCS) with coherent xx-ray sources can, in principle, probe material dynamics to infer transport properties using time autocorrelation of density fluctuations. Here we develop a theoretical framework for utilizing XPCS to study material diffusivity in multiscale flows. We extend single-scale shear flow theories to broadband flows using a multiscale analysis that captures shear and diffusion dynamics. Our theory is validated with simulated XPCS for Brownian particles advected in multiscale flows. We demonstrate the versatility of the method over several orders of magnitude in timescale using sequential-pulse XPCS, single-pulse xx-ray speckle visibility spectroscopy (XSVS), and double-pulse XSVS. Published by the American Physical Society2025 
    more » « less
  4. We calibrated the DCS blood flow index against contrast-enhanced time-resolved NIRS for absolute cerebral blood flow. Absolute calibration was stable across single days. A “best” calibration coefficient was obtained from the study population. 
    more » « less
  5. Acousto-optic imaging (AOI) enables optical-contrast imaging deep inside scattering samples via localized ultrasound-modulation of scattered light. While AOI allows optical investigations at depths, its imaging resolution is inherently limited by the ultrasound wavelength, prohibiting microscopic investigations. Here, we propose a computational imaging approach that allows optical diffraction-limited imaging using a conventional AOI system. We achieve this by extracting diffraction-limited imaging information from speckle correlations in the conventionally detected ultrasound-modulated scattered-light fields. Specifically, we identify that since “memory-effect” speckle correlations allow estimation of the Fourier magnitude of the field inside the ultrasound focus, scanning the ultrasound focus enables robust diffraction-limited reconstruction of extended objects using ptychography (i.e., we exploit the ultrasound focus as the scanned spatial-gate probe required for ptychographic phase retrieval). Moreover, we exploit the short speckle decorrelation-time in dynamic media, which is usually considered a hurdle for wavefront-shaping- based approaches, for improved ptychographic reconstruction. We experimentally demonstrate noninvasive imaging of targets that extend well beyond the memory-effect range, with a 40-times resolution improvement over conventional AOI. 
    more » « less