Plant roots elongate when cells produced in the apical meristem enter a transient period of rapid expansion. To measure the dynamic process of root cell expansion in the elongation zone, we captured digital images of growing Arabidopsis roots with horizontal microscopes and analyzed them with a custom image analysis program (PatchTrack) designed to track the growth-driven displacement of many closely spaced image patches. Fitting a flexible logistics equation to patch velocities plotted versus position along the root axis produced the length of the elongation zone (mm), peak relative elemental growth rate (% h−1), the axial position of the peak (mm from the tip), and average root elongation rate (mm h−1). For a wild-type root, the average values of these kinematic traits were 0.52 mm, 23.7% h−1, 0.35 mm, and 0.1 mm h−1, respectively. We used the platform to determine the kinematic phenotypes of auxin transport mutants. The results support a model in which the PIN2 auxin transporter creates an area of expansion-suppressing, supraoptimal auxin concentration that ends 0.1 mm from the quiescent center (QC), and that ABCB4 and ABCB19 auxin transporters maintain expansion-limiting suboptimal auxin levels beginning approximately 0.5 mm from the QC. This study shows that PatchTrack can quantify dynamic root phenotypes in kinematic terms.
This content will become publicly available on May 1, 2025
Cell expansion in a discrete region called the elongation zone drives root elongation. Analyzing time lapse images can quantify the expansion in kinematic terms as if it were fluid flow. We used horizontal microscopes to collect images from which custom software extracted the length of the elongation zone, the peak relative elemental growth rate (REGR) within it, the axial position of the REGR peak, and the root elongation rate. Automation enabled these kinematic traits to be measured in 1575 Arabidopsis seedlings representing 162 recombinant inbred lines (RILs) derived from a cross of Cvi and Ler ecotypes. We mapped ten quantitative trait loci (QTL), affecting the four kinematic traits. Three QTL affected two or more traits in these vertically oriented seedlings. We compared this genetic architecture with that previously determined for gravitropism using the same RIL population. The major QTL peaks for the kinematic traits did not overlap with the gravitropism QTL. Furthermore, no single kinematic trait correlated with quantitative descriptors of the gravitropism response curve across this population. In addition to mapping QTL for growth zone traits, this study showed that the size and shape of the elongation zone may vary widely without affecting the differential growth induced by gravity.
more » « less- Award ID(s):
- 1940115
- NSF-PAR ID:
- 10503456
- Publisher / Repository:
- MDPI
- Date Published:
- Journal Name:
- Plants
- Volume:
- 13
- Issue:
- 9
- ISSN:
- 2223-7747
- Page Range / eLocation ID:
- 1189
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Plants typically orient their organs with respect to the Earth’s gravity field by a dynamic process called gravitropism. To discover conserved genetic elements affecting seedling root gravitropism, we measured the process in a set of Zea mays (maize) recombinant inbred lines with machine vision and compared the results with those obtained in a similar study of Arabidopsis thaliana . Each of the several quantitative trait loci that we mapped in both species spanned many hundreds of genes, too many to test individually for causality. We reasoned that orthologous genes may be responsible for natural variation in monocot and dicot root gravitropism. If so, pairs of orthologous genes affecting gravitropism may be present within the maize and Arabidopsis QTL intervals. A reciprocal comparison of sequences within the QTL intervals identified seven pairs of such one-to-one orthologs. Analysis of knockout mutants demonstrated a role in gravitropism for four of the seven: CCT2 functions in phosphatidylcholine biosynthesis, ATG5 functions in membrane remodeling during autophagy, UGP2 produces the substrate for cellulose and callose polymer extension, and FAMA is a transcription factor. Automated phenotyping enabled this discovery of four naturally varying components of a conserved process (gravitropism) by making it feasible to conduct the same large-scale experiment in two species.more » « less
-
Duque, Paula ; Szakonyi, Dora (Ed.)Gravity is a powerful element in shaping plant development, with gravitropism, the oriented growth response of plant organs to the direction of gravity, leading to each plant’s characteristic form both above and below ground. Despite being conceptually simple to follow, monitoring a plant’s directional growth responses can become complex as variation arises from both internal developmental cues as well as effects of the environment. In this protocol, we discuss approaches to gravitropism assays, focusing on automated analyses of root responses. For Arabidopsis, we recommend a simple 90 rotation using seedlings that are 5–8 days old. If images are taken at regular intervals and the environmental metadata is recorded during both seedling development and gravitropic assay, these data can be used to reveal quantitative kinetic patterns at distinct stages of the assay. The use of software that analyzes root system parameters and stores this data in the RSML format opens up the possibility for a host of root parameters to be extracted to characterize growth of the primary root and a range of lateral root phenotypes.more » « less
-
Abstract Understanding how plants respond to temperature is relevant for agriculture in a warming world. Responses to temperature in the shoot have been characterized more fully than those in the root. Previous work on thermomorphogenesis in roots established that for Arabidopsis thaliana (Columbia) seedlings grown continuously at a given temperature, the root meristem produces cells at the same rate at 15°C as at 25°C and the root’s growth zone is the same length. To uncover the pathway(s) underlying this constancy, we screened 34 A. thaliana genotypes for parameters related to growth and division. No line failed to respond to temperature. Behavior was little affected by mutations in phytochrome or other genes that underly thermomorphogenesis in shoots. However, a mutant in cryptochrome 2 was disrupted substantially in both cell division and elongation, specifically at 15°C. Among the 34 lines, cell production rate varied extensively and was associated only weakly with root growth rate; in contrast, parameters relating to elongation were stable. Our data are consistent with models of root growth that invoke cell non-autonomous regulation for establishing boundaries between meristem, elongation zone and mature zone.
-
ABSTRACT Plants develop throughout their lives: seeds become seedlings that mature and form fruits and seeds. Although the underlying mechanisms that drive these developmental phase transitions have been well elucidated for shoots, the extent to which they affect the root is less clear. However, root anatomy does change as some plants mature; meristems enlarge and radial thickening occurs. Here, in Arabidopsis thaliana, we show that overexpressing miR156A, a gene that promotes the juvenile phase, increased the density of the root system, even in grafted plants in which only the rootstock had the overexpression genotype. In the root, overexpression of miR156A resulted in lower levels of PLETHORA 2, a protein that affects formation of the meristem and elongation zone. Crossing in an extra copy of PLETHORA 2 partially rescued the effects of miR156A overexpression on traits affecting root architecture, including meristem length and the rate of lateral root emergence. Consistent with this, PLETHORA 2 also inhibited the root-tip expression of another miR156 gene, miR156C. We conclude that the system driving phase change in the shoot affects developmental progression in the root, and that PLETHORA 2 participates in this network.more » « less