A shortage in the science, technology, engineering, and mathematics (STEM) workforce has made it clear that STEM educators should adjust their teaching pedagogy to engage and retain students by improving student interest in STEM fields. Furthermore, in addition to discipline-based knowledge, students must learn the soft skills employers value to increase employability. Project-based learning (PBL), a student-centered teaching method in science labs, is a strategy that encourages students to create their projects while applying soft skills. This article demonstrates that integrating and implementing PBL in a biotechnology lab enhances knowledge and increases student retention and employment rates. 
                        more » 
                        « less   
                    
                            
                            Developing and implementing a mnemonic device for teaching biological organisms in STEM education
                        
                    
    
            Developing useful STEM pedagogical strategies is a constant goal for STEM instructors at institutions of higher learning. Analysis of empirical evidence illustrating retention rates and graduation rates among college students in STEM highlights the need for approaches to improve content engagement and learning. This article presents and describes using a mnemonic device to teach students about key features of living (e. g., bacteria) and non - living (e. g., viruses) organisms. The acronym TEDDI D. SMUB can be useful for analyzing parasitic, pathogenic, and free - living organisms. TEDDI D. SMUB is an abbreviation for taxonomy, epidemiology, diseases, drugs, immunology, diagnostics, symptoms, morphology, unique features, and biology. In addition to using this approach to learn about one organism, this approach is great for comparative organismal analysis. The article also introduces individual instructional assessments (IIA) that proffer a method to reduce plagiarism and better evaluate student understanding of discipline - based laboratory skills and cognitive skills. Additional mixed methods research studies are needed to validate the efficacy of the TEDDI D. SMUB mnemonic device to improve student educational outcomes and STEM department objectives. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 2232563
- PAR ID:
- 10503482
- Date Published:
- Journal Name:
- International Journal of Science and Research
- Volume:
- 12
- Issue:
- 7
- ISSN:
- 2319-7064
- Page Range / eLocation ID:
- 992-995
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            POGIL, or process-oriented guided inquiry learning, is a pedagogical technique created over thirty years ago to enhance student engagement. POGIL is a student-centered approach that improves students’ learning and professional skills. POGIL activities incorporate the classic learning model with recurrent actions of exploration, concept invention, and application to encourage student inquiry. The microbiome represents the total collection of microbes associated with living organisms in distinct locations. The balance of microorganisms at the population level impacts an organism’s health and disease disposition. Enrichment or reduction of specific bacteria, viruses, and fungi in the human population accurately predicts normal or abnormal physiological functions. There is a lack of literature regarding POGIL and microbiome sciences. Thus, this article will elucidate the advantages of developing and integrating microbiome-focused POGIL assignments in institutions of higher learning. The development of additional POGIL activities will improve the understanding of microbiome concepts and experiments designed to explore the composition and functions of the microbiome in various plant and animal ecosystems. Additional educational research on the effects of POGIL activities on student outcomes will boost acceptance of this collaborative learning technique.more » « less
- 
            Researchers have characterized the challenges many deaf and hard of hearing (DHH) students face in postsecondary science, technology, engineering, and mathematics (STEM) programs to three domains: preparation, socialization, and access. Additionally, some research has found that learners who are DHH have poor autonomous learning skills. The Deaf STEM Community Alliance, a project supported by the National Science Foundation (NSF HRD-1127955), created a model virtual (online) academic community called the DHH Virtual Academic Community to directly address preparation, socialization, and access challenges with the logic that online resources provide innovative and flexible means to adapt to complex student needs and schedules. This article describes a mixed-method study regarding one instructor’s effort to supplement developmental math education with online videos for students who are DHH, addressing issues relating to the challenges of preparation and access. Data analysis used both quantitative and qualitative methods to interpret student responses ( n = 89) about viewing behaviors and perceived benefits of the videos. Analysis of viewing behaviors also incorporated aggregated user analytics generated by YouTube. An unexpected finding of the study relates to the opportunity to develop autonomous learning skills by using the videos. While previous research with this student population has frequently found that students are teacher dependent, this study suggested that providing review videos allowed students to practice and master content on their own, strengthening their autonomous study skills.more » « less
- 
            Abstract Given the large variation in conceptualizations and enactment of K− 12integrated STEM, this paper puts forth a detailed conceptual framework for K− 12integrated STEM education that can be used by researchers, educators, and curriculum developers as a common vision. Our framework builds upon the extant integrated STEM literature to describe seven central characteristics of integrated STEM: (a) centrality of engineering design, (b) driven by authentic problems, (c) context integration, (d) content integration, (e) STEM practices, (f) twenty-first century skills, and (g) informing students about STEM careers. Our integrated STEM framework is intended to provide more specific guidance to educators and support integrated STEM research, which has been impeded by the lack of a deep conceptualization of the characteristics of integrated STEM. The lack of a detailed integrated STEM framework thus far has prevented the field from systematically collecting data in classrooms to understand the nature and quality of integrated STEM instruction; this delays research related to the impact on student outcomes, including academic achievement and affect. With the framework presented here, we lay the groundwork for researchers to explore the impact of specific aspects of integrated STEM or the overall quality of integrated STEM instruction on student outcomes.more » « less
- 
            The active learning student-centered teaching approach process-oriented guided inquiry learning (POGIL) is a stimulating peer-based pedagogical method gaining momentum based on reported students’ outcomes that align with STEM undergraduate goals and objectives and job market competencies. Specific advanced topics in biology are intractable to many undergraduate students and require innovative, collaborative methods to produce desired learning outcomes. Chemistry instructors originally designed POGIL, and while biology-based POGILs are present in the literature, there is a limited amount of POGILs available in molecular biology. Thus, the current article illustrates a POGIL exercise that explores the central dogma, a fundamental principle in molecular biology. The central dogma of molecular biology provides a framework for gene expression processes and describes the flow of genetic information in living organisms. The central dogma describes how DNA nucleotides are transcribed into RNA nucleotides and translated into proteins. This seminal concept of molecular biology is critical to student understanding in introductory and advanced biological sciences courses. The POGIL exercise is organized based on the learning cycle model associated with inquiry-focused teaching techniques. The learning cycle model promotes gradual concept comprehension and real-world utilization. An increase in molecular biology POGIL exercises is required to improve student understanding and course grades in molecular biology or related disciplines. Examining the efficacy of using the current molecular biology POGIL exercise is necessary from the perspectives of undergraduate students and biology faculty to fortify POGIL usage at colleges and universities.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    