Although the demand for STEM (Science, Technology, Engineering, and Mathematics) personnel continues to raise in the U.S. workforce, it has been revealed that STEM education is not providing the necessary supply. Graduates with a STEM education are below their counterparts internationally. This paper seeks to introduce a new teaching methodology, based on a merger of Project-Based Learning (PBL), Hands-on Learning (HOL), Simulation-Based Learning (SBL), and the Cognitive Apprenticeship (CA) framework, aimed at improving learning in STEM education. The methodology aims to address three of the four main causes for the STEM paradox, namely (i) shortage of graduates with Soft Skills, (ii) lack of qualified technicians, and (iii) untapped pools of talent while increasing students’ self-efficacy. It has been implemented as a case study for the past four years in four courses. Analysis of results has shown that, for all courses, students (i) acquired and increased their domain knowledge, procedural and processed knowledge while solving problems, in given scenarios resulting in their expertise level increasing. These results also showcased an increased their self-efficacy as well as their Soft Skills, especially Higher Order Thinking Skills (HOLS) competency levels.
more »
« less
Contextualization of Soft Skills in a Biotechnology Course with Project-Based Learning
A shortage in the science, technology, engineering, and mathematics (STEM) workforce has made it clear that STEM educators should adjust their teaching pedagogy to engage and retain students by improving student interest in STEM fields. Furthermore, in addition to discipline-based knowledge, students must learn the soft skills employers value to increase employability. Project-based learning (PBL), a student-centered teaching method in science labs, is a strategy that encourages students to create their projects while applying soft skills. This article demonstrates that integrating and implementing PBL in a biotechnology lab enhances knowledge and increases student retention and employment rates.
more »
« less
- NSF-PAR ID:
- 10497367
- Publisher / Repository:
- Zenodo
- Date Published:
- Journal Name:
- Journal of advanced technological education
- Volume:
- 2
- Issue:
- 2
- ISSN:
- 2832-9635
- Page Range / eLocation ID:
- 5-10
- Subject(s) / Keyword(s):
- project-based learning biotechnology
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
null (Ed.)Access to enriching science programs is not equitable, with students from affluent districts having more opportunities to develop their science, technology, engineering, and mathematics (STEM) skills than students from underserved districts. The Building Unique Inventions to Launch Discovery, Engagement, and Reasoning in STEM (BUILDERS) program was started in 2017 with support from the National Science Foundation’s ITEST program to provide students from the Alabama Black Belt with STEM opportunities to which they would otherwise have no access. This project-based learning (PBL) program uses the concept of a makerspace to allow students to explore how science and technology can be used to solve the problems that affect their own communities. During an intensive, 3-week summer experience (the BUILDERS Academy), teams of students enthusiastically use the makerspace to design, build, and test prototypes of technology-based solutions to their community problems. During this immersive PBL process, they acquire and apply STEM concepts, learn about STEM careers, and acquire valuable 21st century skills. An extension of the summer Academy into the academic year was only moderately successful, highlighting the need to make extra-curricular STEM interventions available to underserved students in order to increase equitable access to practical and enriching educational experiences in STEM.more » « less
-
Banu, Eliza A. (Ed.)Access to enriching science programs is not equitable, with students from affluent districts having more opportunities to develop their science, technology, engineering, and mathematics (STEM) skills than students from underserved districts. The Building Unique Inventions to Launch Discovery, Engagement, and Reasoning in STEM (BUILDERS) program was started in 2017 with support from the National Science Foundation’s ITEST program to provide students from the Alabama Black Belt with STEM opportunities to which they would otherwise have no access. This project-based learning (PBL) program uses the concept of a makerspace to allow students to explore how science and technology can be used to solve the problems that affect their own communities. During an intensive, 3-week summer experience (the BUILDERS Academy), teams of students enthusiastically use the makerspace to design, build, and test prototypes of technology-based solutions to their community problems. During this immersive PBL process, they acquire and apply STEM concepts, learn about STEM careers, and acquire valuable 21st century skills. An extension of the summer Academy into the academic year was moderately successful. Overall, these results highlight the need to make extracurricular STEM interventions available to underserved students in order to increase equitable access to practical and enriching educational experiences in STEM.more » « less
-
ABSTRACT Adoption of Materials Science and Engineering (MSE) into the pre-college classroom is an ideal strategy for addressing Next Generation Science Standards (NGSS), specifically the Science and Engineering Practices. MSE offers core science and engineering topics that can be incorporated into existing Science, Technology, Engineering, and Mathematic (STEM) curricula through teaching modules. Using MSE as a teaching vehicle, the Center for Research on Interface Structures and Phenomena (CRISP) conducted a series of small-scale studies of its teacher professional development workshops and a student summer program, along with related teaching modules, in an effort to measure the contribution MSE has on students and K-12 STEM educators. Based on participant survey feedback, CRISP found improvement in students’ MSE knowledge, interests, and career goals. For teachers, in addition to improving their MSE knowledge, they also increased their comfort and confidence in teaching MSE concepts in their classroom. These results provide evidence for the use of MSE modules as productive teaching tools for NGSS Science and Engineering Practices, as well as producing workforce-competitive STEM students.more » « less
-
This qualitative study chronicles one of the fundamental pillars of the Curriculum and Community Enterprise for Restoration Science (CCERS). The professional development is focused on curricula that are grounded in the community-based environmental restoration of the waterways of New York Harbor. Centered on the restoration of the native oyster population, hundreds of New York City public school teachers take part in this experience with the intent of increasing their own place-based pedagogical content knowledge and skills. Most of the participants teach in school with populations that are underrepresented in post-secondary STEM majors and STEM related careers. Professional learning activities for teachers and community scientists were offered throughout the 2021 calendar year. Professional Learning Activity Surveys were administered and teachers responded to questions about how they participated in CCERS events, the ways in which CCERS participation has impacted their teaching practice, whether they use CCERS activities for student research, and ways CCERS participation impacts student STEM career interest. An intended outcome is to instill a STEM identity in students identifying as URM and to bring STEM career awareness to these students. More than 72% of the teachers in the professional development sessions agreed that the professional learning activities were effective in providing new STEM content knowledge and best practices for teaching. The majority also reported that the sessions enabled them to increase their students’ engagement with STEM and interest in STEM careers.more » « less