Abstract A search for pair-produced vector-like quarks using events with exactly one lepton (eor$$\mu $$ ), at least four jets including at least oneb-tagged jet, and large missing transverse momentum is presented. Data from proton–proton collisions at a centre-of-mass energy of$$\sqrt{s}=$$ 13 $$\text {TeV}$$ , recorded by the ATLAS detector at the LHC from 2015 to 2018 and corresponding to an integrated luminosity of 139 fb$$^{-1}$$ , are analysed. Vector-like partnersTandBof the top and bottom quarks are considered, as is a vector-likeXwith charge$$+5/3$$ , assuming their decay into aW,Z, or Higgs boson and a third-generation quark. No significant deviations from the Standard Model expectation are observed. Upper limits on the production cross-section ofTandBquark pairs as a function of their mass are derived for various decay branching ratio scenarios. The strongest lower limits on the masses are 1.59 $$\text {TeV}$$ assuming mass-degenerate vector-like quarks and branching ratios corresponding to the weak-isospin doublet model, and 1.47 $$\text {TeV}$$ (1.46 $$\text {TeV}$$ ) for exclusive$$T \rightarrow Zt$$ ($$B/X \rightarrow Wt$$ ) decays. In addition, lower limits on theTandBquark masses are derived for all possible branching ratios.
more »
« less
Machine learning classification of sphalerons and black holes at the LHC
Abstract In models with large extra dimensions, “miniature” black holes (BHs) might be produced in high-energy proton–proton collisions at the Large Hadron Collider (LHC). In the semi-classical regime, those BHs thermally decay, giving rise to large-multiplicity final states with jets and leptons. On the other hand, similar final states are also expected in the production of electroweak sphaleron/instanton-induced processes. We investigate whether one can discriminate these scenarios when BH or sphaleron-like events are observed in the LHC using machine learning (ML) methods. Classification among several BH scenarios with different numbers of extra dimensions and the minimal BH masses is also examined. In this study we consider three ML models: XGBoost algorithms with (1) high- and (2) low-level inputs, and (3) a Residual Convolutional Neural Network. In the latter case, the low-level detector information is converted into an input format of three-layer binned event images, where the value of each bin corresponds to the energy deposited in various detector subsystems. We demonstrate that only a small number of detected events are sufficient to effectively discriminate between the sphaleron and BH processes. Separation between BH scenarios with different minimal masses is possible with an order of 10 events passing the preselection. A sufficient number of events could be observed in combined Run-2 and -3 data, if the production cross section is not much smaller than the present limit$$\sim 0.1$$ fb. We find, however, that a large number of events is needed to discriminate between BH hypotheses with the same minimal BH mass, but different numbers of extra dimensions.
more »
« less
- Award ID(s):
- 2210161
- PAR ID:
- 10503584
- Publisher / Repository:
- Springer Science + Business Media
- Date Published:
- Journal Name:
- The European Physical Journal C
- Volume:
- 84
- Issue:
- 4
- ISSN:
- 1434-6052
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract This paper presents a search for dark matter,$$\chi $$ , using events with a single top quark and an energeticWboson. The analysis is based on proton–proton collision data collected with the ATLAS experiment at$$\sqrt{s}=$$ 13 TeV during LHC Run 2 (2015–2018), corresponding to an integrated luminosity of 139 fb$$^{-1}$$ . The search considers final states with zero or one charged lepton (electron or muon), at least oneb-jet and large missing transverse momentum. In addition, a result from a previous search considering two-charged-lepton final states is included in the interpretation of the results. The data are found to be in good agreement with the Standard Model predictions and the results are interpreted in terms of 95% confidence-level exclusion limits in the context of a class of dark matter models involving an extended two-Higgs-doublet sector together with a pseudoscalar mediator particle. The search is particularly sensitive to on-shell production of the charged Higgs boson state,$$H^{\pm }$$ , arising from the two-Higgs-doublet mixing, and its semi-invisible decays via the mediator particle,a:$$H^{\pm } \rightarrow W^\pm a (\rightarrow \chi \chi )$$ . Signal models with$$H^{\pm }$$ masses up to 1.5 TeV andamasses up to 350 GeV are excluded assuming a$$\tan \beta $$ value of 1. For masses ofaof 150 (250) GeV,$$\tan \beta $$ values up to 2 are excluded for$$H^{\pm }$$ masses between 200 (400) GeV and 1.5 TeV. Signals with$$\tan \beta $$ values between 20 and 30 are excluded for$$H^{\pm }$$ masses between 500 and 800 GeV.more » « less
-
Abstract The mass of the top quark is measured in 36.3$$\,\text {fb}^{-1}$$ of LHC proton–proton collision data collected with the CMS detector at$$\sqrt{s}=13\,\text {Te}\hspace{-.08em}\text {V} $$ . The measurement uses a sample of top quark pair candidate events containing one isolated electron or muon and at least four jets in the final state. For each event, the mass is reconstructed from a kinematic fit of the decay products to a top quark pair hypothesis. A profile likelihood method is applied using up to four observables per event to extract the top quark mass. The top quark mass is measured to be$$171.77\pm 0.37\,\text {Ge}\hspace{-.08em}\text {V} $$ . This approach significantly improves the precision over previous measurements.more » « less
-
Abstract Leptoquarks ($$\textrm{LQ}$$ s) are hypothetical particles that appear in various extensions of the Standard Model (SM), that can explain observed differences between SM theory predictions and experimental results. The production of these particles has been widely studied at various experiments, most recently at the Large Hadron Collider (LHC), and stringent bounds have been placed on their masses and couplings, assuming the simplest beyond-SM (BSM) hypotheses. However, the limits are significantly weaker for$$\textrm{LQ}$$ models with family non-universal couplings containing enhanced couplings to third-generation fermions. We present a new study on the production of a$$\textrm{LQ}$$ at the LHC, with preferential couplings to third-generation fermions, considering proton-proton collisions at$$\sqrt{s} = 13 \, \textrm{TeV}$$ and$$\sqrt{s} = 13.6 \, \textrm{TeV}$$ . Such a hypothesis is well motivated theoretically and it can explain the recent anomalies in the precision measurements of$$\textrm{B}$$ -meson decay rates, specifically the$$R_{D^{(*)}}$$ ratios. Under a simplified model where the$$\textrm{LQ}$$ masses and couplings are free parameters, we focus on cases where the$$\textrm{LQ}$$ decays to a$$\tau $$ lepton and a$$\textrm{b}$$ quark, and study how the results are affected by different assumptions about chiral currents and interference effects with other BSM processes with the same final states, such as diagrams with a heavy vector boson,$$\textrm{Z}^{\prime }$$ . The analysis is performed using machine learning techniques, resulting in an increased discovery reach at the LHC, allowing us to probe new physics phase space which addresses the$$\textrm{B}$$ -meson anomalies, for$$\textrm{LQ}$$ masses up to$$5.00\, \textrm{TeV}$$ , for the high luminosity LHC scenario.more » « less
-
A<sc>bstract</sc> Measurements of the inclusive and normalised differential cross sections are presented for the production of single top quarks in association with a W boson in proton-proton collisions at a centre-of-mass energy of 13 TeV. The data used were recorded with the CMS detector at the LHC during 2016–2018, and correspond to an integrated luminosity of 138 fb−1. Events containing one electron and one muon in the final state are analysed. For the inclusive measurement, a multivariate discriminant, exploiting the kinematic properties of the events is used to separate the signal from the dominant$$ \textrm{t}\overline{\textrm{t}} $$ background. A cross section of$$ 79.2\pm 0.9{\left(\textrm{stat}\right)}_{-8.0}^{+7.7}\left(\textrm{syst}\right)\pm 1.2\left(\textrm{lumi}\right) $$ pb is obtained, consistent with the predictions of the standard model. For the differential measurements, a fiducial region is defined according to the detector acceptance, and the requirement of exactly one jet coming from the fragmentation of a bottom quark. The resulting distributions are unfolded to particle level and agree with the predictions at next-to-leading order in perturbative quantum chromodynamics.more » « less
An official website of the United States government
