skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: SAviTraits 1.0: Seasonally varying dietary attributes for birds
Abstract MotivationTrait‐based studies remain limited by the quality and scope of the underlying trait data available. Most of the existing trait databases treat species traits as fixed across time, with any potential temporal variation in the measured traits being unavailable. This is despite the fact that many species are well known to show plasticity in their trait characteristics over the course of the year. This data paper describes a compilation of species‐specific dietary preferences and their known intra‐annual variation for over 10,000 of the world's extant bird species (SAviTraits 1.0). Information on dietary preferences was obtained from the Cornell Lab of Ornithology Birds of the World (BOW) online database. Textual descriptions of species' dietary preferences were translated into semi‐quantitative information denoting the proportion of dietary categories utilized by each species. Temporal variation in dietary attributes was captured at a monthly temporal resolution. We describe the methods for data discovery and translation and present tools for summarizing the annual variability of avian dietary preferences. Altogether, we were able to document a seasonal variability in dietary attributes for a total of 1031 species (ca. 10%). For the remaining species, the dietary attributes were either temporally stationary or the information on temporal variability of the diet was not available. Main Types of Variable ContainedTemporally‐varying dietary traits for birds. Spatial Location and GrainN/A. Time Period and GrainVariation in diet was captured at a monthly temporal resolution. Major Taxa and Level of MeasurementBirds, species level. Software Format.csv/.rds  more » « less
Award ID(s):
1926598
PAR ID:
10503636
Author(s) / Creator(s):
; ; ; ; ; ;
Publisher / Repository:
Wiley
Date Published:
Journal Name:
Global Ecology and Biogeography
Volume:
32
Issue:
10
ISSN:
1466-822X
Page Range / eLocation ID:
1690 to 1698
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Martins, Ines (Ed.)
    Abstract MotivationBiodiversity in many areas is rapidly declining because of global change. As such, there is an urgent need for new tools and strategies to help identify, monitor and conserve biodiversity hotspots. This is especially true for frugivores, species consuming fruit, because of their important role in seed dispersal and maintenance of forest structure and health. One way to identify these areas is by quantifying functional diversity, which measures the unique roles of species within a community and is valuable for conservation because of its relationship with ecosystem functioning. Unfortunately, the functional trait information required for these studies can be sparse for certain taxa and specific traits and difficult to harmonize across disparate data sources, especially in biodiversity hotspots. To help fill this need, we compiled Frugivoria, a trait database containing ecological, life‐history, morphological and geographical traits for mammals and birds exhibiting frugivory. Frugivoria encompasses species in contiguous moist montane forests and adjacent moist lowland forests of Central and South America—the latter specifically focusing on the Andean states. Compared with existing trait databases, Frugivoria harmonizes existing trait databases, adds new traits, extends traits originally only available for mammals to birds also and fills gaps in trait categories from other databases. Furthermore, we create a cross‐taxa subset of shared traits to aid in analysis of mammals and birds. In total, Frugivoria adds 8662 new trait values for mammals and 14,999 for birds and includes a total of 45,216 trait entries with only 11.37% being imputed. Frugivoria also contains an open workflow that harmonizes trait and taxonomic data from disparate sources and enables users to analyse traits in space. As such, this open‐access database, which aligns with FAIR data principles, fills a major knowledge gap, enabling more comprehensive trait‐based studies of species in this ecologically important region. Main Types of Variable ContainedEcological, life‐history, morphological and geographical traits. Spatial Location and GrainNeotropical countries (Mexico, Guatemala, Costa Rica, Panama, El Salvador, Belize, Nicaragua, Ecuador, Colombia, Peru, Bolivia, Argentina, Venezuela and Chile) with contiguous montane regions. Time Period and GrainIUCN spatial data: obtained February 2023, spanning range maps collated from 1998 to 2022. IUCN species data: obtained June 2019–September 2022. Newly included traits: span 1924 to 2023. Major Taxa and Level of MeasurementClasses Mammalia and Aves; 40,074 species‐level traits; 5142 imputed traits for 1733 species (mammals: 582; birds: 1147) and 16 sub‐species (mammals). Software Format.csv; R. 
    more » « less
  2. Abstract Background and AimsDynamic global vegetation models (DGVMs) are essential for quantifying the role of terrestrial ecosystems in the Earth’s climate system, but struggle with uncertainty and complexity. Eco-evolutionary optimality (EEO) theory provides a promising approach to improve DGVMs based on the premise that leaf carbon gain is optimized with resource costs. However, the timescales at which plant traits can adjust to environmental changes have not yet been systematically incorporated in EEO-based models. Our aims were to identify temporal constraints on key leaf photosynthetic and leaf functional traits, and develop a conceptual framework for incorporation of temporal leaf trait dynamics in EEO-based models. MethodsWe reviewed the scientific literature on temporal responses of leaf traits associated with stomata and hydraulics, photosynthetic biochemistry, and morphology and lifespan. Subsequent response times were categorized from fast to slow considering physiological, phenotypic (acclimation) and evolutionary (adaptation) mechanisms. We constructed a conceptual framework including several key leaf traits identified from the literature review. We considered temporal separation of dynamics in the leaf interior to atmospheric CO2 concentration (ci:ca) from the optimal ci:ca ratio [χ(optimal)] and dynamics in stomatal conductance within the constraint of the anatomical maximum stomatal conductance (gsmax). A proof-of-concept was provided by modelling temporally separated responses in these trait combinations to CO2 and humidity. Key ResultsWe identified 17 leaf traits crucial for EEO-based modelling and determined their response mechanisms and timescales. Physiological and phenotypic response mechanisms were considered most relevant for modelling EEO-based trait dynamics, while evolutionary constraints limit response ranges. Our conceptual framework demonstrated an approach to separate near-instantaneous physiological responses in ci:ca from week-scale phenotypic responses in χ(optimal), and to separate minute-scale physiological responses in stomatal conductance from annual-scale phenotypic responses in gsmax. ConclusionsWe highlight an opportunity to constrain leaf trait dynamics in EEO-based models based on physiological, phenotypic and evolutionary response mechanisms. 
    more » « less
  3. ABSTRACT AimsThe community composition of native and alien plant species is influenced by the environment (e.g., nutrient addition and changes in temperature or precipitation). A key objective of our study is to understand how differences in the traits of alien and native species vary across diverse environmental conditions. For example, the study examines how changes in nutrient availability affect community composition and functional traits, such as specific leaf area and plant height. Additionally, it seeks to assess the vulnerability of high‐nutrient environments, such as grasslands, to alien species colonization and the potential for alien species to surpass natives in abundance. Finally, the study explores how climatic factors, including temperature and precipitation, modulate the relationship between traits and environmental conditions, shaping species success. LocationIn our study, we used data from a globally distributed experiment manipulating nutrient supplies in grasslands worldwide (NutNet). MethodsWe investigate how temporal shifts in the abundance of native and alien species are influenced by species‐specific functional traits, including specific leaf area (SLA) and leaf nutrient concentrations, as well as by environmental conditions such as climate and nutrient treatments, across 17 study sites. Mixed‐effects models were used to assess these relationships. ResultsAlien and native species increasing in their abundance did not differ in their leaf traits. We found significantly lower specific leaf area (SLA) with an increase in mean annual temperature and lower leaf Potassium with mean annual precipitation. For trait–environment relationships, when compared to native species, successful aliens exhibited an increase in leaf Phosphorus and a decrease in leaf Potassium with an increase in mean annual precipitation. Finally, aliens' SLA decreased in plots with higher mean annual temperatures. ConclusionsTherefore, studying the relationship between environment and functional traits may portray grasslands' dynamics better than focusing exclusively on traits of successful species, per se. 
    more » « less
  4. Abstract One of the most reliable features of natural systems is that they change through time. Theory predicts that temporally fluctuating conditions shape community composition, species distribution patterns, and life history variation, yet features of temporal variability are rarely incorporated into studies of species–environment associations. In this study, we evaluated how two components of temporal environmental variation—variability and predictability—impact plant community composition and species distribution patterns in the alpine tundra of the Southern Rocky Mountains in Colorado (USA). Using the Sensor Network Array at the Niwot Ridge Long‐Term Ecological Research site, we used in situ, high‐resolution temporal measurements of soil moisture and temperature from 13 locations (“nodes”) distributed throughout an alpine catchment to characterize the annual mean, variability, and predictability in these variables in each of four consecutive years. We combined these data with annual vegetation surveys at each node to evaluate whether variability over short (within‐day) and seasonal (2‐ to 4‐month) timescales could predict patterns in plant community composition, species distributions, and species abundances better than models that considered average annual conditions alone. We found that metrics for variability and predictability in soil moisture and soil temperature, at both daily and seasonal timescales, improved our ability to explain spatial variation in alpine plant community composition. Daily variability in soil moisture and temperature, along with seasonal predictability in soil moisture, was particularly important in predicting community composition and species occurrences. These results indicate that the magnitude and patterns of fluctuations in soil moisture and temperature are important predictors of community composition and plant distribution patterns in alpine plant communities. More broadly, these results highlight that components of temporal change provide important niche axes that can partition species with different growth and life history strategies along environmental gradients in heterogeneous landscapes. 
    more » « less
  5. Abstract The availability and quality of food resources can alter the intensity of competition and predation pressure within communities. Understanding species capacity to respond to global change‐driven shifts in resource distribution is therefore crucial for biodiversity conservation. Small mammal communities are often structured by competition for food resources, but understanding and monitoring these processes are currently hindered by lack of functional dietary trait information in these hard‐to‐sample systems. In this study, we collected a comprehensive suite of gastrointestinal (GI) measurements from 26 small mammal species (including some never reported), compared them with more traditional craniodental traits in predicting dietary guild, and used them in a novel way to understand how diet structures 22 small mammal communities across the Appalachian Mountains of eastern North America. As predicted, we found GI traits to be effective dietary trait proxies; they were equally or more accurate than craniodental proportions in predicting the dietary guild of individual species. Furthermore, at the community level, we found that both the mean and functional dispersion of GI length were positively correlated with latitude and measures of temperature seasonality. Our results indicate that small mammal communities in more seasonal environments are filtered to include species with longer GI tracts (on average) as well as those that can partition food resources more finely, as expected based on the lower productivity of these regions. Conversely, communities in less seasonal environments display functional redundancy from the addition of species with short to intermediate GI lengths. Proportions of the GI tract represent novel dietary traits that can illuminate community assembly processes across regional environmental gradients and in the face of changing timing and availability of resources. 
    more » « less