skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Singlet O 2 from Ultraviolet Excitation of the Quinoline-O 2 Complex
We report results from experiments with the quinoline-O2 complex, which was photodissociated using light near 312 nm. Photodissociation resulted in formation of the lowest excited state of oxygen, O2 a 1Δg, which we detected using resonance enhanced multiphoton ionization and velocity map ion imaging. The O2+ ion image allowed for a determination of the center-of-mass translational energy distribution, P(ET), following complex dissociation. We also report results of electronic structure calculations for the quinoline singlet ground state and lowest energy triplet state. From the CCSD/aug-cc-pVDZ//(U)MP2/cc-pVDZ calculations, we determined the lowest energy triplet state to have ππ* electronic character and to be 2.69 eV above the ground state. We also used electronic structure calculations to determine the geometry and binding energy for several quinoline-O2 complexes. The calculations indicated that the most strongly bound complex has a well depth of about 0.11 eV and places the O2 moiety above and approximately parallel to the quinoline ring system. By comparing the experimental P(ET) with the energy for the singlet ground state and the lowest energy triplet state, we concluded that the quinoline product was formed in the lowest energy triplet state. Finally, we found the experimental P(ET) to be in agreement with a Prior translational energy distribution, which suggests a statistical dissociation for the complex.  more » « less
Award ID(s):
2150871
PAR ID:
10503670
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
Journal of Physical Chemistry A
Date Published:
Journal Name:
The Journal of Physical Chemistry A
Volume:
127
Issue:
23
ISSN:
1089-5639
Page Range / eLocation ID:
4957 to 4963
Subject(s) / Keyword(s):
singlet oxygen resonance enhanced multiphoton ionization REMPI velocity map ion imaging VMI
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. In our experiment, a trace amount of an organic molecule (M = 1H-phenalen-1-one, 9-fluorenone, pyridine, or acridine) was seeded into a gas mix consisting of 3% O2 with a rare gas buffer (He or Ar) and then supersonically expanded. We excited the resulting molecular beam with ultraviolet light at either 355 nm (1H-phenalen-1-one, 9-fluorenone, or acridine) or 266 nm (pyridine) and used resonance enhanced multiphoton ionization (REMPI) spectroscopy to probe for formation of O2 in the a 1Δg state, 1O2. For all systems, the REMPI spectra demonstrates that ultraviolet excitation results in formation of 1O2 and the oxygen product is confirmed to be in the ground vibrational state and with an effective rotational temperature below 80 K. We then recorded the velocity map ion image of the 1O2 product. From the ion images we determined the center-of-mass translational energy distribution, P(ET), assuming photodissociation of a bimolecular M-O2 complex. We also report results from electronic structure calculations that allow for a determination of the M-O2 ground state binding energy. We use the complex binding energy, the energy to form 1O2, and the adiabatic triplet energy for each organic molecule to determine the available energy following photodissociation. For dissociation of a bimolecular complex, this available energy may be partitioned into either center-of-mass recoil or internal degrees of freedom of the organic moiety. We use the available energy to generate a Prior distribution, which predicts statistical energy partitioning during dissociation. For low available energies, less than 0.2 eV, we find the statistical prediction is in reasonable agreement with the experimental observations. However, at higher available energies the experimental distribution is biased to lower center-of-mass kinetic energies compared with the statistical prediction, which suggests the complex undergoes vibrational predissociation. 
    more » « less
  2. The dissociation of the CNHicomplex in GaN is studied in detail using photoluminescence measurements and first‐principles calculations. The blue luminescence (BL2) band with a maximum at 3.0 eV is caused by electron transitions from an excited state located at 0.02 eV below the conduction band to the ground state of the CNHidonor with the 0/+ level 0.15 eV above the valence band. The dissociation releases hydrogen atom, and the remaining CNdefect with the −/0 state at 0.92 eV above the valence band is responsible for the yellow band (YL1) with a maximum at about 2.2 eV. The dissociation of the CNHicomplex can be caused by the photoinduced defect reaction mechanism under UV illumination at low temperature (≈20 K), leading to the bleaching of the BL2 band and simultaneous rise in the YL1 band. The bleaching is reversible. Alternatively, the complex dissociates after annealing at temperatures above 600 °C. The activation energy of this process (3–4 eV, depending on the annealing geometry) corresponds to the removal of hydrogen from the sample and not to the dissociation of the complex itself. 
    more » « less
  3. The anionic products following (H + H + ) abstraction from o -, m -, and p -methylphenol (cresol) are investigated using flowing afterglow-selected ion flow tube (FA-SIFT) mass spectrometry and anion photoelectron spectroscopy (PES). The PES of the multiple anion isomers formed in this reaction are reported, including those for the most abundant isomers, o -, m - and p -methylenephenoxide distonic radical anions. The electron affinity (EA) of the ground triplet electronic state of neutral m -methylenephenoxyl diradical was measured to be 2.227 ± 0.008 eV. However, the ground singlet electronic states of o - and p -methylenephenoxyl were found to be significantly stabilized by their resonance forms as a substituted cyclohexadienone, resulting in measured EAs of 1.217 ± 0.012 and 1.096 ± 0.007 eV, respectively. Upon electron photodetachment, the resulting neutral molecules were shown to have Franck–Condon active ring distortion vibrational modes with measured frequencies of 570 ± 180 and 450 ± 80 cm −1 for the ortho and para isomers, respectively. Photodetachment to excited electronic states was also investigated for all isomers, where similar vibrational modes were found to be Franck–Condon active, and singlet–triplet splittings are reported. The thermochemistry of these molecules was investigated using FA-SIFT combined with the acid bracketing technique to yield values of 341.4 ± 4.3, 349.1 ± 3.0, and 341.4 ± 4.3 kcal mol −1 for the o -, m -, and p -methylenephenol radicals, respectively. Construction of a thermodynamic cycle allowed for an experimental determination of the bond dissociation energy of the O–H bond of m -methylenephenol radical to be 86 ± 4 kcal mol −1 , while this bond is significantly weaker for the ortho and para isomers at 55 ± 5 and 52 ± 5 kcal mol −1 , respectively. Additional EAs and vibrational frequencies are reported for several methylphenyloxyl diradical isomers, the negative ions of which are also formed by the reaction of cresol with O − . 
    more » « less
  4. The elusive PcFe(DABCO)2(Pc = phthalocyaninato(2-) ligand; DABCO = 1,4-diazabicyclo[2.2.2]octane) complex was prepared and characterized by UV-Vis, MCD,1H NMR, and Mössbauer spectroscopies. The X-ray crystal structure of this complex indicates the longest Fe-N(DABCO) bond distance among all known PcFeL2complexes with nitrogen donors as the axial ligands. The target compound is only stable in the presence of large access of the axial ligand and rapidly converts into the (PcFe)2O [Formula: see text]-oxo dimer even at a modest temperature. The electronic structure of the PcFe(DABCO)2complex was elucidated by DFT and TDDFT methods. The DFT calculations predicted a very small singlet-triplet gap in this compound. The femtosecond transient absorption spectroscopy is indicative of extremely fast ([Formula: see text]200 fs) deactivation of the first excited state in PcFe(DABCO)2with a lack of formation of the long-lived low-energy triplet state. 
    more » « less
  5. Despite the interest in sulfur monoxide (SO) among astrochemists, spectroscopists, inorganic chemists, and organic chemists, its interaction with water remains largely unexplored. We report the first high level theoretical geometries for the two minimum energy complexes formed by sulfur monoxide and water, and we report energies using basis sets as large as aug-cc-pV(Q+d)Z and correlation effects through perturbative quadruple excitations. One structure of SO⋯H 2 O is hydrogen bonded and the other chalcogen bonded. The hydrogen bonded complex has an electronic energy of −2.71 kcal mol −1 and a zero kelvin enthalpy of −1.67 kcal mol −1 , while the chalcogen bonded complex has an electronic energy of −2.64 kcal mol −1 and a zero kelvin enthalpy of −2.00 kcal mol −1 . We also report the transition state between the two structures, which lies below the SO⋯H 2 O dissociation limit, with an electronic energy of −1.26 kcal mol −1 and an enthalpy of −0.81 kcal mol −1 . These features are much sharper than for the isovalent complex of O 2 and H 2 O, which only possesses one weakly bound minimum, so we further analyze the structures with open-shell SAPT0. We find that the interactions between O 2 and H 2 O are uniformly weak, but the SO⋯H 2 O complex surface is governed by the superior polarity and polarizability of SO, as well as the diffuse electron density provided by sulfur's extra valence shell. 
    more » « less