skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Leibniz International Proceedings in Informatics (LIPIcs):28th International Conference on Principles and Practice of Constraint Programming (CP 2022)
Software defined networks (SDNs) define a programmable network fabric that can be reconfigured to respect global networks properties. Securing against adversaries who try to exploit the network is an objective that conflicts with providing functionality. This paper proposes a two-stage mixed-integer programming framework. The first stage automates routing decisions for the flows to be carried by the network while maximizing readability and ease of use for network engineers. The second stage is meant to quickly respond to security breaches to automatically decide on network counter-measures to block the detected adversary. Both stages are computationally challenging and the security stage leverages large neighborhood search to quickly deliver effective response strategies. The approach is evaluated on synthetic networks of various sizes and shown to be effective for both its functional and security objectives.  more » « less
Award ID(s):
2141033
PAR ID:
10503689
Author(s) / Creator(s):
; ; ; ;  
Editor(s):
Solnon, Christine
Publisher / Repository:
Schloss Dagstuhl – Leibniz-Zentrum für Informatik
Date Published:
Journal Name:
Constraint Programming
Subject(s) / Keyword(s):
Network security mixed integer programming large neighborhood search Theory of computation → Network optimization Networks → Network security Security and privacy → Trust frameworks
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Early attack detection is essential to ensure the security of complex networks, especially those in critical infrastructures. This is particularly crucial in networks with multi-stage attacks, where multiple nodes are connected to external sources, through which attacks could enter and quickly spread to other network elements. Bayesian attack graphs (BAGs) are powerful models for security risk assessment and mitigation in complex networks, which provide the probabilistic model of attackers’ behavior and attack progression in the network. Most attack detection techniques developed for BAGs rely on the assumption that network compromises will be detected through routine monitoring, which is unrealistic given the ever-growing complexity of threats. This paper derives the optimal minimum mean square error (MMSE) attack detection and monitoring policy for the most general form of BAGs. By exploiting the structure of BAGs and their partial and imperfect monitoring capacity, the proposed detection policy achieves the MMSE optimality possible only for linear-Gaussian state space models using Kalman filtering. An adaptive resource monitoring policy is also introduced for monitoring nodes if the expected predictive error exceeds a user-defined value. Exact and efficient matrix-form computations of the proposed policies are provided, and their high performance is demonstrated in terms of the accuracy of attack detection and the most efficient use of available resources using synthetic Bayesian attack graphs with different topologies. 
    more » « less
  2. The monitoring of data streams with a network structure have drawn increasing attention due to its wide applications in modern process control. In these applications, high-dimensional sensor nodes are interconnected with an underlying network topology. In such a case, abnormalities occurring to any node may propagate dynamically across the network and cause changes of other nodes over time. Furthermore, high dimensionality of such data significantly increased the cost of resources for data transmission and computation, such that only partial observations can be transmitted or processed in practice. Overall, how to quickly detect abnormalities in such large networks with resource constraints remains a challenge, especially due to the sampling uncertainty under the dynamic anomaly occurrences and network-based patterns. In this paper, we incorporate network structure information into the monitoring and adaptive sampling methodologies for quick anomaly detection in large networks where only partial observations are available. We develop a general monitoring and adaptive sampling method and further extend it to the case with memory constraints, both of which exploit network distance and centrality information for better process monitoring and identification of abnormalities. Theoretical investigations of the proposed methods demonstrate their sampling efficiency on balancing between exploration and exploitation, as well as the detection performance guarantee. Numerical simulations and a case study on power network have demonstrated the superiority of the proposed methods in detecting various types of shifts. Note to Practitioners —Continuous monitoring of networks for anomalous events is critical for a large number of applications involving power networks, computer networks, epidemiological surveillance, social networks, etc. This paper aims at addressing the challenges in monitoring large networks in cases where monitoring resources are limited such that only a subset of nodes in the network is observable. Specifically, we integrate network structure information of nodes for constructing sequential detection methods via effective data augmentation, and for designing adaptive sampling algorithms to observe suspicious nodes that are likely to be abnormal. Then, the method is further generalized to the case that the memory of the computation is also constrained due to the network size. The developed method is greatly beneficial and effective for various anomaly patterns, especially when the initial anomaly randomly occurs to nodes in the network. The proposed methods are demonstrated to be capable of quickly detecting changes in the network and dynamically changes the sampling priority based on online observations in various cases, as shown in the theoretical investigation, simulations and case studies. 
    more » « less
  3. Groote, Jan Friso; Larsen, Kim Guldstrand (Ed.)
    Deep learning has emerged as an effective approach for creating modern software systems, with neural networks often surpassing hand-crafted systems. Unfortunately, neural networks are known to suffer from various safety and security issues. Formal verification is a promising avenue for tackling this difficulty, by formally certifying that networks are correct. We propose an SMT-based technique for verifying binarized neural networks — a popular kind of neural network, where some weights have been binarized in order to render the neural network more memory and energy efficient, and quicker to evaluate. One novelty of our technique is that it allows the verification of neural networks that include both binarized and non-binarized components. Neural network verification is computationally very difficult, and so we propose here various optimizations, integrated into our SMT procedure as deduction steps, as well as an approach for parallelizing verification queries. We implement our technique as an extension to the Marabou framework, and use it to evaluate the approach on popular binarized neural network architectures. 
    more » « less
  4. The security of residential networks can vary greatly. These networks are often administrated by end-users who may lack security expertise or the resources to adequately defend their networks. Insecure residential networks provide attackers with opportunities to infiltrate systems and create a platform for launching powerful attacks. To address these issues, we introduce a new approach that uses software-defined networking (SDN) to allow home users to outsource their security maintenance to a cloud-based service provider. Using this architecture, we show how a novel network-based two-factor authentication approach can be used to protect Internet of Things devices. Our approach works without requiring modifications to end-devices. We further show how security modules can enforce protocol messages to limit the attack surface in vulnerable devices. Our analysis shows that the system is effective and adds less than 50 milliseconds of delay to the start of a connection with less than 100 microseconds of delay for subsequent packets. 
    more » « less
  5. Li, J.; Spanos, P. D.; Chen, J.-B.; Peng, Y.-B. (Ed.)
    Quantifying network reliability is a hard problem, proven to be #P-complete [1]. For real-world network planning and decision making, approximations for the network reliability problem are necessary. This study shows that tensor network contraction (TNC) methods can quickly estimate an upper bound of All Terminal Reliability, RelATR(G), by solving a superset of the network reliability problem: the edge cover problem, EC(G). In addition, these tensor contraction methods can exactly solve source-terminal (S-T) reliability for the class of directed acyclic networks, RelS−T (G). The computational complexity of TNC methods is parameterized by treewidth, significantly benefitting from recent advancements in approximate tree decomposition algorithms [2]. This parameterization does not rely on the reliability of the graph, which means these tensor contraction methods can determine reliability faster than Monte Carlo methods on highly reliable networks, while also providing exact answers or guaranteed upper bound estimates. These tensor contraction methods are applied to grid graphs, random cubic graphs, and a selection of 58 power transmission networks [3], demonstrating computational efficiency and effective approximation using EC(G). 
    more » « less