skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Optimal monitoring and attack detection of networks modeled by Bayesian attack graphs
Abstract Early attack detection is essential to ensure the security of complex networks, especially those in critical infrastructures. This is particularly crucial in networks with multi-stage attacks, where multiple nodes are connected to external sources, through which attacks could enter and quickly spread to other network elements. Bayesian attack graphs (BAGs) are powerful models for security risk assessment and mitigation in complex networks, which provide the probabilistic model of attackers’ behavior and attack progression in the network. Most attack detection techniques developed for BAGs rely on the assumption that network compromises will be detected through routine monitoring, which is unrealistic given the ever-growing complexity of threats. This paper derives the optimal minimum mean square error (MMSE) attack detection and monitoring policy for the most general form of BAGs. By exploiting the structure of BAGs and their partial and imperfect monitoring capacity, the proposed detection policy achieves the MMSE optimality possible only for linear-Gaussian state space models using Kalman filtering. An adaptive resource monitoring policy is also introduced for monitoring nodes if the expected predictive error exceeds a user-defined value. Exact and efficient matrix-form computations of the proposed policies are provided, and their high performance is demonstrated in terms of the accuracy of attack detection and the most efficient use of available resources using synthetic Bayesian attack graphs with different topologies.  more » « less
Award ID(s):
2202395
PAR ID:
10451640
Author(s) / Creator(s):
;
Publisher / Repository:
Springer Science + Business Media
Date Published:
Journal Name:
Cybersecurity
Volume:
6
Issue:
1
ISSN:
2523-3246
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The increasing interconnectivity in our infrastructure poses a significant security challenge, with external threats having the potential to penetrate and propagate throughout the network. Bayesian attack graphs have proven to be effective in capturing the propagation of attacks in complex interconnected networks. However, most existing security approaches fail to systematically account for the limitation of resources and uncertainty arising from the complexity of attacks and possible undetected compromises. To address these challenges, this paper proposes a partially observable Markov decision process (POMDP) model for network security under uncertainty. The POMDP model accounts for uncertainty in monitoring and defense processes, as well as the probabilistic attack propagation. This paper develops two security policies based on the optimal stationary defense policy for the underlying POMDP state process (i.e., a network with known compromises): the estimation‐based policy that performs the defense actions corresponding to the optimal minimum mean square error state estimation and the distribution‐based policy that utilizes the posterior distribution of network compromises to make defense decisions. Optimal monitoring policies are designed to specifically support each of the defense policies, allowing dynamic allocation of monitoring resources to capture network vulnerabilities/compromises. The performance of the proposed policies is examined in terms of robustness, accuracy, and uncertainty using various numerical experiments. 
    more » « less
  2. Advanced Persistent Threats (APT) attacks have plagued modern enterprises, causing significant financial losses. To counter these attacks, researchers propose techniques that capture the complex and stealthy scenarios of APT attacks by using provenance graphs to model system entities and their dependencies. Particularly, to accelerate attack detection and reduce financial losses, online provenance-based detection systems that detect and investigate APT attacks under the constraints of timeliness and limited resources are in dire need. Unfortunately, existing online systems usually sacrifice detection granularity to reduce computational complexity and produce provenance graphs with more than 100,000 nodes, posing challenges for security admins to interpret the detection results. In this paper, we design and implement NODLINK, the first online detection system that maintains high detection accuracy without sacrificing detection granularity. Our insight is that the APT attack detection process in online provenance-based detection systems can be modeled as a Steiner Tree Problem (STP), which has efficient online approximation algorithms that recover concise attack-related provenance graphs with a theoretically bounded error. To utilize the frameworks of the STP approximation algorithm for APT attack detection, we propose a novel design of in-memory cache, an efficient attack screening method, and a new STP approximation algorithm that is more efficient than the conventional one in APT attack detection while maintaining the same complexity. We evaluate NODLINK in a production environment. The openworld experiment shows that NODLINK outperforms two state-ofthe- art (SOTA) online provenance analysis systems by achieving magnitudes higher detection and investigation accuracy while having the same or higher throughput. 
    more » « less
  3. Despite the increased accuracy of intrusion detection systems (IDS) in identifying cyberattacks in computer networks and devices connected to the internet, distributed or coordinated attacks can still go undetected or not detected on time. The single vantage point limits the ability of these IDSs to detect such attacks. Due to this reason, there is a need for attack characteristics’ exchange among different IDS nodes. Researchers proposed a cooperative intrusion detection system to share these attack characteristics effectively. This approach was useful; however, the security of the shared data cannot be guaranteed. More specifically, maintaining the integrity and consistency of shared data becomes a significant concern. In this paper, we propose a blockchain-based solution that ensures the integrity and consistency of attack characteristics shared in a cooperative intrusion detection system. The proposed architecture achieves this by detecting and preventing fake features injection and compromised IDS nodes. It also facilitates scalable attack features exchange among IDS nodes, ensures heterogeneous IDS nodes participation, and it is robust to public IDS nodes joining and leaving the network. We evaluate the security analysis and latency. The result shows that the proposed approach detects and prevents compromised IDS nodes, malicious features injection, manipulation, or deletion, and it is also scalable with low latency. 
    more » « less
  4. Intrusion detection systems are a commonly deployed defense that examines network traffic, host operations, or both to detect attacks. However, more attacks bypass IDS defenses each year, and with the sophistication of attacks increasing as well, we must examine new perspectives for intrusion detection. Current intrusion detection systems focus on known attacks and/or vulnerabilities, limiting their ability to identify new attacks, and lack the visibility into all system components necessary to confirm attacks accurately, particularly programs. To change the landscape of intrusion detection, we propose that future IDSs track how attacks evolve across system layers by adapting the concept of attack graphs. Attack graphs were proposed to study how multi-stage attacks could be launched by exploiting known vulnerabilities. Instead of constructing attacks reactively, we propose to apply attack graphs proactively to detect sequences of events that fulfill the requirements for vulnerability exploitation. Using this insight, we examine how to generate modular attack graphs automatically that relate adversary accessibility for each component, called its attack surface, to flaws that provide adversaries with permissions that create threats, called attack states, and exploit operations from those threats, called attack actions. We evaluate the proposed approach by applying it to two case studies: (1) attacks on file retrieval, such as TOCTTOU attacks, and (2) attacks propagated among processes, such as attacks on Shellshock vulnerabilities. In these case studies, we demonstrate how to leverage existing tools to compute attack graphs automatically and assess the effectiveness of these tools for building complete attack graphs. While we identify some research areas, we also find several reasons why attack graphs can provide a valuable foundation for improving future intrusion detection systems. 
    more » « less
  5. null (Ed.)
    The science DMZ is a specialized network model developed to guarantee secure and efficient transfer of data for large-scale distributed research. To enable a high level of performance, the Science DMZ includes dedicated data transfer nodes (DTNs). Protecting these DTNs is crucial to maintaining the overall security of the network and the data, and insider attacks are a major threat. Although some limited network intrusion detection systems (NIDS) are deployed to monitor DTNs, this alone is not sufficient to detect insider threats. Monitoring for abnormal system behavior, such as unusual sequences of system calls, is one way to detect insider threats. However, the relatively predictable behavior of the DTN suggests that we can also detect unusual activity through monitoring system performance, such as CPU and disk usage, along with network activity. In this paper, we introduce a potential insider attack scenario, and show how readily available system performance metrics can be employed to detect data tampering within DTNs, using DBSCAN clustering to actively monitor for unexpected behavior. 
    more » « less