Previous work has shown increased morphological variance within the forelimbs of the Permian synapsid group known as Therapsida over that of their Carboniferous and early Permian forerunners (“pelycosaurs”). Considering that disparity trends have been known to point to underlying macroevolutionary transitions, here we analyzed morphological variance alongside several additional macroevolutionary metrics to better isolate possible evolutionary mechanisms. Shape data was collected on a sample of 119 humeri and 99 ulnae comprising three major synapsid radiations with a temporal range from the Carboniferous into the Triassic. Taxonomic sample included all major groups of pelycosaur-grade synapsids, all five recognized non-cynodontian therapsid clades, and a sample of pre-prozostrodontian cynodonts. Procrustes variance - a multivariate quantification of morphospace occupation - was the chosen disparity metric for the study. Rate of phenotypic change, which considers the amount of shape change that would be necessary to achieve observed morphologies given the shape of the closely related taxa, was analyzed as the metric for evolutionary rate. Both metrics were considered through-time upon genera present in sequential 5 million year time bins. Our results expand upon previous findings that disparity increases throughout the earliest stages of the Permian, coincident with the diversification of pelycosaurs and the emergence of Therapsida. This expanded dataset further shows that disparity approaches an asymptote around 270 million years ago and only increases marginally through the late Permian, remaining between 0.018–0.021 from 275-245 mya. In contrast, evolutionary rate does not appear to asymptote during this same interval, starting at a low of 6.17e-6 (300 mya) and increasing to a peak of 1.78e-5 right before the End Permian Mass Extinction Event (252 mya). The continuing increase of evolutionary rate shows that morphological change continues across taxa, but the plateauing of morphological disparity suggests that morphospace is not expanding concurrent with this. The incongruence between these two metrics suggests a critical change in evolutionary mode, wherein morphological change continues rapidly but does not result in the evolution of novel morphologies. These results provide some of the strongest quantitative data yet of an evolutionary constraint acting upon the morphology of the synapsid forelimb through deep time.
more »
« less
TESTING FOR FUNCTIONAL CONSTRAINTS AMONG TRENDS IN EURYPTERID APPENDICULAR DIVERSITY AND DISPARITY
Eurypterids were an extinct group of aquatic chelicerate arthropods which originated in the mid-Ordovician and persisted until the late Permian. Being character-rich organisms with a well-resolved and robust phylogeny, eurypterids are an excellent study group for exploring evolutionary mechanisms and processes, such as trends in diversity and disparity and drivers of morphological change. Here, we use eurypterids as a case study for exploring mosaic evolution and the role of functional constraints in limiting disparity through an emphasis on the morphological diversity of the prosomal appendages and differences in somatic variation in the prosoma and opisthosoma. A dataset comprising 122 characters coded for 39 taxa (selected for completeness) was compiled in order to explore patterns of complexity in eurypterid tagmata over the course of their evolutionary history. The matrix, while comprised of discrete characters, is explicitly distinct from the kind of matrices employed in phylogenetic analysis, with prosomal appendage armature and tergite pleural structures being coded somite by somite. In total, 62 characters are coded for the prosoma (16 of which relate to the prosomal carapace and 46 of which relate to the prosomal appendages) and 60 are coded for the opisthosoma (55 for the tergites and 5 for the telson). From this dataset Euclidean pairwise distances between all taxa were generated and subjected to ordination through principal coordinates analysis (PCO), generating a theoretical morphospace. We compare metrics for disparity(as summarized by the Sum of Ranges and Sum of Variance of occupied morphospace)and appendage differentiation (limb tagmatization as defined by Cisne 1974) to explore patterns in complexity and disparity across eurypterids. Prosomal and opisthosomal disparity was analysed together and separately, in order to test for mosaicism across the eurypterid tagmata, with eurypterids grouped according to either environmental occupation, the form of the chelicera, and the morphology of appendage VI. These analyses explore whether limb complexity correlates with different life habits, the impact of increasing cheliceral size on limb complexity, and whether the advent of swimming in the group resulted in a functional release for appendage specialization.
more »
« less
- Award ID(s):
- 1943082
- PAR ID:
- 10503801
- Publisher / Repository:
- Geological Society of America Abstracts with Programs
- Date Published:
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
EARLY EVOLUTION OF SEA SCORPIONS: EURYPTERIDS (CHELICERATA: EURYPTERIDA) OF THE BIG HILL LAGERSTÄTTEEurypterids are a group of diverse chelicerates that first appeared during the Middle Ordovician and went extinct at the end of the Permian. Despite there being over 250 species of eurypterids known, the fossil record of eurypterids during the Ordovician is relatively sparce, comprising only 12 species representing the Megalograptidae, a ‘waeringopterid’ clade, Rhenopteridae, Onychopterellidae, Adelophthalmidae, and Eurypteroidea. As such, any new discoveries that elucidate on the early evolutionary history of the clade is noteworthy. Here, we report on early eurypterids from the Late Ordovician Big Hill Lagerstätte of Michigan’s Stonington Peninsula with preserved organic cuticle. Preliminary study of the available specimens indicates they may comprise two new species, each assignable to new genera within the Carcinosomatidae and Dolichopteridae, which would represent the oldest known occurrence of both clades. The new species may help elucidate on the morphological ground pattern of these clades and will be incorporated into existing phylogenetic frameworks. The eurypterids at Big Hill represent the oldest known eurypterid community for which more than a single species is known to co-occur. The Big Hill Lagerstätte is unique in preserving eurypterids, chasmataspidids, and xiphosurans all in association and as such affords an important window into the early evolution of euchelicerates.more » « less
-
Understanding how the mechanisms that result in the development of new morphologies act is fundamental to exploring how evolutionoperates. Carcinosomatids are an unusual group of eurypterids which are characterized by the possession of a greatly expanded,disc-like preabdomen along with relatively short prosomal appendages bearing well-developed spines. The ontogeny of this highlydistinctive group is revealed by a species from the Silurian of Lesmahagow, Scotland. Specimens of Carcinosoma scorpioides ,originally considered to be three separate species, are here shown to represent at least three different ontogenetic stages rangingfrom early juveniles to adults. The earliest instars are markedly different from the adults, with a narrow preabdomen and elongatedprosomal appendages bearing moderately-sized spines, resulting in an overall appearance more reminiscent of the closely relatedmixopterids. The species first undergoes an expansion of the preabdomen while a relative reduction in the length of the prosomalappendages occurs in later instars. Other eurypterids exhibit a relative reduction in prosomal appendage length over ontogeny, withjuveniles having exceptionally long appendages, and also have a reduced prosomal armature which increases progressively duringgrowth. Eurypterids also show a positive allometric trend in preabdominal width early in their ontogeny. As such, Carcinosomascorpioides exhibits the same general developmental trends seen in other eurypterids, indicating that the ontogenetic trajectory ofeurypterids is generally conserved even amongst highly aberrant members of the clade. Furthermore, the preserved ontogeny of Carcinosoma scorpioides suggests that the unusual morphology of carcinosomatids developed due to peramorphic heterochronicprocesses whereby species develop exaggerated characteristics along the ontogenetic trajectory beyond the ancestral condition.Interestingly, despite these traits all being derived through peramorphy, mosaicism is evident in these heterochronic changes with thebody width increase occurring due to an increase in the rate of allometric change early on in ontogeny, while the reduced appendagelength and enlarged armature appears to be associated with an increase in body size and may be due to either a delay in reachingmaturity or an increase in the rate of growth later in ontogeny.more » « less
-
The transformation of paired fins into tetrapod limbs is one of the most intensively scrutinized events in animal evolution. Early anatomical and embryological datasets identified distinctive morphological regions within the appendage and posed hypotheses about how the loss, gain, and transformation of these regions could explain the observed patterns of both extant and fossil appendage diversity. These hypotheses have been put to the test by our growing understanding of patterning mechanisms that regulate formation of the appendage axes, comparisons of gene expression data from an array of phylogenetically informative taxa, and increasingly sophisticated and elegant experiments leveraging the latest molecular approaches. Together, these data demonstrate the remarkable conservation of developmental mechanisms, even across phylogenetically and morphologically disparate taxa, as well as raising new questions about the way we view homology, evolutionary novelty, and the often non-linear connection between morphology and gene expression. In this review, we present historical hypotheses regarding paired fin evolution and limb origins, summarize key aspects of central appendage patterning mechanisms in model and non-model species, address how modern comparative developmental data interface with our understanding of appendage anatomy, and highlight new approaches that promise to provide new insight into these well-traveled questions.more » « less
-
Eurypterids—Palaeozoic marine and freshwater arthropods commonly known as sea scorpions—repeatedly evolved to remarkable sizes (over 0.5 m in length) and colonized continental aquatic habitats multiple times. We compiled data on the majority of eurypterid species and explored several previously proposed explanations for the evolution of giant size in the group, including the potential role of habitat, sea surface temperature and dissolved sea surface oxygen levels, using a phylogenetic comparative approach with a new tip-dated tree. There is no compelling evidence that the evolution of giant size was driven by temperature or oxygen levels, nor that it was coupled with the invasion of continental aquatic environments, latitude or local faunal diversity. Eurypterid body size evolution is best characterized by rapid bursts of change that occurred independently of habitat or environmental conditions. Intrinsic factors played a major role in determining the convergent origin of gigantism in eurypterids.more » « less
An official website of the United States government
