skip to main content


Title: Recent Acceleration of Wetland Accretion and Carbon Accumulation Along the U.S. East Coast
Abstract

The long‐term stability of coastal wetlands is determined by interactions among sea level, plant primary production, sediment supply, and wetland vertical accretion. Human activities in watersheds have significantly altered sediment delivery from the landscape to the coastal ocean, with declines along much of the U.S. East Coast. Tidal wetlands in coastal systems with low sediment supply may have limited ability to keep pace with accelerating rates of sea‐level rise (SLR). Here, we show that rates of vertical accretion and carbon accumulation in nine tidal wetland systems along the U.S. East Coast from Maine to Georgia can be explained by differences in the rate of relative SLR (RSLR), the concentration of suspended sediments in the rivers draining to the coast, and temperature in the coastal region. Further, we show that rates of vertical accretion have accelerated over the past century by between 0.010 and 0.083 mm yr−2, at roughly the same pace as the acceleration of global SLR. We estimate that rates of carbon sequestration in these wetland soils have accelerated (more than doubling at several sites) along with accelerating accretion. Wetland accretion and carbon accumulation have accelerated more rapidly in coastal systems with greater relative RSLR, higher watershed sediment availability, and lower temperatures. These findings suggest that the biogeomorphic feedback processes that control accretion and carbon accumulation in these tidal wetlands have responded to accelerating RSLR, and that changes to RSLR, watershed sediment supply, and temperature interact to determine wetland vulnerability across broad geographic scales.

 
more » « less
Award ID(s):
1637630 1832178
NSF-PAR ID:
10419826
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Earth's Future
Volume:
11
Issue:
3
ISSN:
2328-4277
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    The Mississippi River Deltaic Plain experiences high relative sea level rise, limited sediment supply, and high marsh edge erosion, leading to the substantial coastal wetland and stored soil organic matter (SOM) loss. The objective of this study was to understand the SOM accumulation rates over the past 1000 years related to the changes in the depositional environment in these highly eroding coastal wetlands. Soil cores (2 m) were collected from four sites in Barataria Basin, LA and analyzed for proportion of organic and mineral matter, total C, N, P, particle size, and stable isotopic composition (δ13C and δ15N), as well as14C and137Cs dating. The soil carbon stock in the 2 m depth (62.4 ± 2 kg m−2) was approximately 88% greater than the carbon stock in just the 1 m depth (33.1 ± 0.6 kg m−2) indicating a need for considering deeper soil profiles (up to 2 m) to estimate blue carbon stock in deltaic environments. The average vertical accretion rate for Barataria Basin was 8.1 ± 0.6 mm year−1over 50 years. The long‐term (1000‐year time scale) C accumulation rate (39 g C m−2year−1) was ∼14% of the short‐term accumulation rate (254 ± 19 g C m−2year−1). Wetlands in Barataria Basin started as fresh marsh and transitioned over time to intermediate to brackish. These marshes were able to maintain relative elevation through the accumulation of organic matter and mud despite high relative rates of sea‐level rise. However, the high rates of edge erosion may limit these marshes to continue to sequester atmospheric carbon under accelerating sea level in the absence of restoration efforts.

     
    more » « less
  2. Abstract

    Coastal wetlands have two dimensions of vulnerability to sea‐level rise (SLR), a vertical one, in cases where SLR outpaces their capacity to vertically accrete, and a lateral one, in cases where they are restricted from migrating inland by topography and land use. We conducted a meta‐analysis of accretion rates, standardized our analysis by using only137Cs based estimates, and used model intercomparison to generate a vertical resilience index, a function of local SLR, tidal range, and tidal elevation category for the tidal wetlands of the contiguous US. We paired the vertical resilience index with a lateral resilience index made up of elevation, water level, and land cover maps, then projected them both into the future using localized SLR scenarios. At the regional scale, the vertical resilience index predicts changes from marsh aggradation to submergence for the coastal US Mid‐Atlantic, Southeast, and portions of the Northeast by 2100. At the sub‐regional scale, there is a geographic tradeoff between vertical and lateral resilience with more northerly wetlands vulnerable to the lack of suitable proportional area to migrate into, and more southerly wetlands vulnerable to accretion deficit. We estimate between 43% and 48% of the existing contiguous US wetland area, almost entirely located in watersheds along the Gulf of Mexico and Mid‐Atlantic coasts, is subject to both vertical and lateral limitations. These vertical and lateral resilience indices could help direct future research, planning, and mitigation efforts at a national scale, as well as supplement more processed informed approaches by local planners and practitioners.

     
    more » « less
  3. Abstract Several coastal ecosystems—most notably mangroves and tidal marshes—exhibit biogenic feedbacks that are facilitating adjustment to relative sea-level rise (RSLR), including the sequestration of carbon and the trapping of mineral sediment 1 . The stability of reef-top habitats under RSLR is similarly linked to reef-derived sediment accumulation and the vertical accretion of protective coral reefs 2 . The persistence of these ecosystems under high rates of RSLR is contested 3 . Here we show that the probability of vertical adjustment to RSLR inferred from palaeo-stratigraphic observations aligns with contemporary in situ survey measurements. A deficit between tidal marsh and mangrove adjustment and RSLR is likely at 4 mm yr −1 and highly likely at 7 mm yr −1 of RSLR. As rates of RSLR exceed 7 mm yr −1 , the probability that reef islands destabilize through increased shoreline erosion and wave over-topping increases. Increased global warming from 1.5 °C to 2.0 °C would double the area of mapped tidal marsh exposed to 4 mm yr −1 of RSLR by between 2080 and 2100. With 3 °C of warming, nearly all the world’s mangrove forests and coral reef islands and almost 40% of mapped tidal marshes are estimated to be exposed to RSLR of at least 7 mm yr −1 . Meeting the Paris agreement targets would minimize disruption to coastal ecosystems. 
    more » « less
  4. null (Ed.)
    Abstract Shorelines and their ecosystems are endangered by sea-level rise. Nature-based coastal protection is becoming a global strategy to enhance coastal resilience through the cost-effective creation, restoration and sustainable use of coastal wetlands. However, the resilience to sea-level rise of coastal wetlands created under Nature-based Solution has been assessed largely on a regional scale. Here we assess, using a meta-analysis, the difference in accretion, elevation, and sediment deposition rates between natural and restored coastal wetlands across the world. Our results show that restored coastal wetlands can trap more sediment and that the effectiveness of these restoration projects is primarily driven by sediment availability, not by wetland elevation, tidal range, local rates of sea-level rise, and significant wave height. Our results suggest that Nature-based Solutions can mitigate coastal wetland vulnerability to sea-level rise, but are effective only in coastal locations where abundant sediment supply is available. 
    more » « less
  5. Abstract

    Salinity control, nutrient additions, and sediment supply were directly or indirectly the rationale for a $220 million coastal wetland restoration project (Davis Pond River Diversion) that began in 2002. We sampled Mississippi River water going in and out of the receiving basin from 1999 to 2018 to understand why wetland loss increased after it began. There was a reduction in inorganic sediments, nitrogen (N), and phosphorus (P) concentrations within the ponding area of 77%, 39% and 34%, respectively, which is similar to that in other wetlands. But the average sediment accumulation of 0.6 mm year−1inadequately balances the present-day 5.6 mm year−1sea level rise or the 7.9 ± 0.13 mm year−1accretion rates in these organic soils. Nutrients added likely reduced live belowground biomass and soil strength, and increased decomposition of the organic matter necessary to sustain elevations. The eutrophication of the downstream aquatic system from the diversion, principally by P additions, increased Chlaconcentrations to a category of ‘poor’ water quality. We conclude that this diversion, if continued, will be a negative influence on wetland area and will eutrophy the estuary. It is a case history example for understanding the potential effects arising from proposed river diversions.

     
    more » « less