skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: RF Injection Locking of THz Metasurface Quantum‐Cascade VECSEL
Abstract Radiofrequency (RF) injection locking and spectral broadening of a terahertz (THz) quantum‐cascade vertical‐external‐cavity surface‐emitting laser (QC‐VECSEL) is demonstrated. An intracryostat VECSEL focusing cavity design is used to enable continuous‐wave lasing with a cavity length over 30 mm, which corresponds to a round‐trip frequency near 5 GHz. Strong RF current modulation is injected to the QC‐metasurface electrical bias to pull and lock the round‐trip frequency. The injection locking range at various RF injection powers is recorded and compared with the injection locking theory. Moreover, the lasing spectrum broadens from 14 GHz in free‐running mode to a maximum spectral width around 110 GHz with 20 dBm of injected RF power. This experimental setup is suitable for further exploration of active mode‐locking and picosecond pulse generation in THz QC‐VECSELs.  more » « less
Award ID(s):
2041165
PAR ID:
10503901
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
Wiley-VCH
Date Published:
Journal Name:
Laser & Photonics Reviews
Volume:
17
Issue:
8
ISSN:
1863-8880
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The effects of optical feedback on a terahertz (THz) quantum-cascade metasurface vertical-external-cavity surface-emitting laser (QC-VECSEL) are investigated via self-mixing. A single-mode 2.80 THz QC-VECSEL operating in continuous-wave is subjected to various optical feedback conditions (i.e., feedback strength, round-trip time, and angular misalignment) while variations in its terminal voltage associated with self-mixing are monitored. Due to its large radiating aperture and near-Gaussian beam shape, we find that the QC-VECSEL is strongly susceptible to optical feedback, which is robust against misalignment of external optics. This, in addition to the use of a high-reflectance flat output coupler, results in high feedback levels associated with multiple round-trips within the external cavity-a phenomenon not typically observed for ridge-waveguide QC-lasers. Thus, a new theoretical model is established to describe self-mixing in the QC-VECSEL. The stability of the device under variable optical feedback conditions is also studied. Any mechanical instabilities of the external cavity (such as vibrations of the output coupler), are enhanced due to feedback and result in low-frequency oscillations of the terminal voltage. The work reveals how the self-mixing response differs for the QC-VECSEL architecture, informs other systems in which optical feedback is unavoidable, and paves the way for QC-VECSEL self-mixing applications. 
    more » « less
  2. Abstract Free-electron-lasers fill a critical gap in the space of THz-sources as they can reach high average and peak powers with spectral tunability. Using a waveguide in a THz FEL significantly increases the coupling between the relativistic electrons and electromagnetic field enabling large amounts of radiation to be generated in a single passage of electrons through the undulator. In addition to transversely confining the radiation, the dispersive properties of the waveguide critically affect the velocity and slippage of the radiation pulse which determine the central frequency and bandwidth of the generated radiation. In this paper, we characterize the spectral properties of a compact waveguide THz FEL including simultaneous lasing at two different frequencies and demonstrating tuning of the radiation wavelength in the high frequency branch by varying the beam energy and ensuring that the electrons injected into the undulator are prebunched on the scale of the resonant radiation wavelength. 
    more » « less
  3. Quantum cascade lasers (QCLs) have emerged as promising candidates for generating chip-scale frequency combs in mid-infrared and terahertz wavelengths. In this work, we demonstrate frequency comb formation in ring terahertz QCLs using the injection of light from a distributed feedback (DFB) laser. The DFB design frequency is chosen to match the modes of the ring cavity (near 3.3 THz), and light from the DFB is injected into the ring QCL via a bus waveguide. By controlling the power and frequency of the optical injection, we show that combs can be selectively formed and controlled in the ring cavity. Numerical modeling suggests that this comb is primarily frequency-modulated in character, with the injection serving to trigger comb formation. We also show that the ring can be used as a filter to control the output of the DFB QCL, potentially being of interest in terahertz photonic integrated circuits. Our work demonstrates that waveguide couplers are a compelling approach for injecting and extracting radiation from ring terahertz combs and offer exciting possibilities for the generation of new comb states in terahertz, such as frequency-modulated waves, solitons, and more. 
    more » « less
  4. Razeghi, Manijeh; Baranov, Alexei N. (Ed.)
    Quantum cascade laser (QCL) is becoming the leading laser source in the mid-infrared and terahertz range due to its rapid development in power, efficiency, and spectral covering range. Owing to its unique intersubband transition and fast carrier lifetime, QCL possesses strong nonlinear susceptibilities that makes it the ideal platform for a variety of nonlinear optical generations. Among this, terahertz (THz) source based on difference-frequency generation (DFG) and frequency comb based on four wave mixing effect are the most exciting phenomena which could potentially revolutionize spectroscopy in mid-infrared (mid-IR) and THz spectral range. In this paper, we will briefly discuss the recent progress of our research. This includes high power high efficiency QCLs, high power room temperature THz sources based on DFG-QCL, room temperature THz frequency comb, and injection locking of high-power QCL frequency combs. The developed QCLs are great candidates as next generation mid-infrared source for spectroscopy and sensing. 
    more » « less
  5. Abstract Laser-cooled gases of atoms interacting with the field of an optical cavity are a versatile tool for quantum sensing and the simulation of quantum systems. These systems can exhibit phenomena such as self-organization phase transitions, lasing mechanisms, squeezed states and protection of quantum coherence. However, investigations of these phenomena typically occur in a discontinuous manner due to the need to reload atomic ensembles. Here we demonstrate hours-long continuous lasing from laser-cooled88Sr atoms loaded into a ring cavity. The required inversion to produce lasing arises from inversion in the atomic-momentum degrees of freedom, which is linked to the self-organization phase transitions and collective atomic recoil lasing observed previously only in a cyclic fashion. We find that over a broad parameter range, the sensitivity of the lasing frequency to changes in cavity frequency is significantly reduced due to an atomic loss mechanism, suggesting a potential approach for mitigating low-frequency cavity noise. Our findings open opportunities for continuous cavity quantum electrodynamics experiments and robust and continuous super-radiant lasers. 
    more » « less