Abstract Optoelectronics are crucial for developing energy‐efficient chip technology, with phase‐change materials (PCMs) emerging as promising candidates for reconfigurable components in photonic integrated circuits, such as nonvolatile phase shifters. Antimony sulfide (Sb2S3) stands out due to its low optical loss and considerable phase‐shifting properties, along with the non‐volatility of both phases. This study demonstrates that the crystallization kinetics of Sb2S3can be switched from growth‐driven to nucleation‐driven by altering the sample dimension from bulk to film. This tuning of the crystallization process is critical for optical switching applications requiring control over partial crystallization. Calorimetric measurements with heating rates spanning over six orders of magnitude, reveal that, unlike conventional PCMs that crystallize below the glass transition, Sb2S3exhibits a measurable glass transition prior to crystallization from the undercooled liquid (UCL) phase. The investigation of isothermal crystallization kinetics provides insights into nucleation rates and crystal growth velocities while confirming the shift to nucleation‐driven behavior at reduced film thicknesses—an essential aspect for effective device engineering. A fundamental difference in chemical bonding mechanisms was identified between Sb2S3, which exhibits covalent bonding in both material phases, and other PCMs, such as GeTe and Ge2Sb2Te5, which demonstrate pronounced bonding alterations upon crystallization.
more »
« less
Nanocrystallization of Cu46Zr33.5Hf13.5Al7 Metallic Glass
The recently discovered Cu46Zr33.5Hf13.5Al7 (at.%) bulk metallic glass (BMG) presents the highest glass-forming ability (GFA) among all known copper-based alloys, with a record-breaking critical casting thickness (or diameter) of 28.5 mm. At present, much remains to be explored about this new BMG that holds exceptional promise for engineering applications. Here, we report our study on the crystallization behavior of this new BMG, using isochronal and isothermal differential scanning calorimetry (DSC), X-ray diffraction (XRD), and transmission electron microscopy (TEM). With the calorimetric data, we determine the apparent activation energy of crystallization, the Avrami exponent, and the lower branch of the isothermal time–temperature–transformation (TTT) diagram. With XRD and TEM, we identify primary and secondary crystal phases utilizing samples crystallized to different degrees within the calorimeter. We also estimate the number density, nucleation rate, and growth rate of the primary crystals through TEM image analysis. Our results reveal that the crystallization in this BMG has a high activation energy of ≈360 kJ/mole and that the primary crystallization of this BMG produces a high number density (≈1021 m−3 at 475 °C) of slowly growing (growth rate < 0.5 nm/s at 475 °C) Cu10(Zr,Hf)7 nanocrystals dispersed in the glassy matrix, while the second crystallization event further produces a new phase, Cu(Zr,Hf)2. The results help us to understand the GFA and thermal stability of this new BMG and provide important guidance for its future engineering applications, including its usage as a precursor to glass–crystal composite or bulk nanocrystalline structures.
more »
« less
- PAR ID:
- 10503949
- Publisher / Repository:
- MDPI
- Date Published:
- Journal Name:
- Crystals
- Volume:
- 13
- Issue:
- 9
- ISSN:
- 2073-4352
- Page Range / eLocation ID:
- 1322
- Subject(s) / Keyword(s):
- metallic glass crystallization nucleation and growth Cu alloys nano-crystal amor- 32 phous alloys ImageJ supercooled liquid calorimetry
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
The study delves into the kinetics of non-isothermal crystallization of Poly (ɛ-caprolactone) (PCL) and MgO-incorporated PCL nanofibers with varying cooling rates. Differential Scanning Calorimetry (DSC-3) was used to acquire crystallization information and investigate the kinetics behavior of the two types of nanofibers under different cooling rates ranging from 0.5–5 K/min. The results show that the crystallization rate decreases at higher crystallization temperatures. Furthermore, the parameters of non-isothermal crystallization kinetics were investigated via several mathematical models, including Jeziorny and Mo’s models. Mo’s approach was suitable to describe the nanofibers’ overall non-isothermal crystallization process. In addition, the Kissinger and Friedman methods were used to calculate the activation energy of bulk-PCL, PCL, and MgO-PCL nanofibers. The result showed that the activation energy of bulk-PCL was comparatively lower than that of nanofibers. The investigation of the kinetics of crystallization plays a crucial role in optimizing manufacturing processes and enhancing the overall performance of nanofibers.more » « less
-
The engineering thermoplastic poly(ether ether ketone) (PEEK) has a rigid backbone that crystallizes relatively slowly upon cooling the melt. In this study, fast scanning chip calorimetry (FSC) was used to analyze isothermal crystallization between 170 and 285 °C, a range from about 27 K above the glass transition temperature up to the melting temperature. Incorporation of carbon nanotubes (CNT) enhances nucleation at all crystallization temperatures, including low temperatures. FSC also was employed to study crystallization at cooling rates spanning 0.33 to 8000 K/s, important as PEEK is subject to these conditions during melt processing. The critical cooling rate to produce a vitrified sample was increased from 500 K/s in the neat PEEK to 4000 K/s in a 5% CNT/PEEK nanocomposite due to faster nucleation rate caused by heterogeneous nucleation.more » « less
-
Abstract Modifiers are commonly used in natural, biological, and synthetic crystallization to tailor the growth of diverse materials. Here, we identify tautomers as a new class of modifiers where the dynamic interconversion between solute and its corresponding tautomer(s) produces native crystal growth inhibitors. The macroscopic and microscopic effects imposed by inhibitor-crystal interactions reveal dual mechanisms of inhibition where tautomer occlusion within crystals that leads to natural bending, tunes elastic modulus, and selectively alters the rate of crystal dissolution. Our study focuses on ammonium urate crystallization and shows that the keto-enol form of urate, which exists as a minor tautomer, is a potent inhibitor that nearly suppresses crystal growth at select solution alkalinity and supersaturation. The generalizability of this phenomenon is demonstrated for two additional tautomers with relevance to biological systems and pharmaceuticals. These findings offer potential routes in crystal engineering to strategically control the mechanical or physicochemical properties of tautomeric materials.more » « less
-
While crystalline 2D metal halide perovskites (MHPs) represent a well-celebrated semiconductor class, with ensuing applications in the fields of photovoltaics, emitters, and sensors, the recent discovery of glass formation in an MHP opens many new opportunities associated with reversible glass-crystalline switching, with each state offering distinct optoelectronic properties. However, the previously reported [S-(−)-1-(1-naphthyl)ethylammonium]2PbBr4 perovskite is a strong glass former with sluggish glass-crystal transformation timescales, pointing to a need for glassy MHPs with a broader range of compositions and crystallization kinetics. Herein we report glass formation in low melting temperature 1-MeHa2PbI4 (1-MeHa = 1-methyl-hexylammonium) using ultrafast calorimetry, thereby extending the range of MHP glass formation across a broader range of organic (fused ring to branched aliphatic) and halide (bromide to iodide) compositions. The importance of a slight loss of organic and hydrogen iodide components from the MHP in stabilizing the glassy state is elucidated. Furthermore, the underlying kinetics of glass-crystal transformation, including activation energies, crystal growth rate, Angell plot, and fragility index is studied using a combination of kinetic, thermodynamic, and rheological modeling techniques. An inferred fast crystal growth rate of 0.21 m/s for 1-MeHa2PbI4 shows promise toward suitability in extended application spaces, for example in metamaterials, nonvolatile memory, and optical and neuromorphic computing devices.more » « less
An official website of the United States government

