skip to main content


Title: The genetic architecture of dewlap pattern in Hispaniola anoles ( Anolis distichus )
Abstract

Color and pattern are often critical to survival and fitness, but we know little about their genetic architecture and heritability in groups like reptiles. We investigated the genetic architecture for the pattern of the dewlap—an extensible throat fan important for communication—in anole lizards. We studied the Hispaniolan bark anole (Anolis distichus)—a species that exhibits impressive intraspecific dewlap polymorphism across its range—by conducting multigenerational experimental crosses with 2 populations, one with a solid pale yellow dewlap and another with an orange dewlap surrounded by a yellow margin. Upon rejecting the hypothesis that the extent of the orange pattern is a quantitative trait resulting from many loci of minor effect, we used a maximum likelihood model-fitting framework to show that it is better explained as a simple Mendelian trait, with the solid yellow morph being dominant over the blush orange. The relatively simple genetic architecture underlying this important trait helps explain the complex distribution of dewlap color variation across the range of A. distichus and suggests that changes in dewlap color and pattern may evolve rapidly in response to natural selection.

 
more » « less
NSF-PAR ID:
10503999
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
Evolution
Volume:
78
Issue:
5
ISSN:
0014-3820
Format(s):
Medium: X Size: p. 987-994
Size(s):
["p. 987-994"]
Sponsoring Org:
National Science Foundation
More Like this
  1. Societal Impact Statement

    Fleshy fruits provide humans with many flavorful and nutritious crops. Understanding the diversity of these plants is fundamental to managing agriculture and food security in a changing world. This study surveyed fruit trait variation across species of tomato wild relatives and explored associations among color, size, shape, sugars, and acids. These wild tomato species native to South America can be interbred with the economically important cultivated tomato. Beyond its application to tomatoes, deepening our knowledge of how fruit traits evolve together is valuable to crop improvement efforts aimed at breeding more nutritious and appealing varieties of fruits.

    Summary

    Fleshy fruits display a striking diversity of traits, many of which are important for agriculture. The evolutionary drivers of this variation are not well understood, and most studies have relied on variation found in the wild. Few studies have explored this question on a fine‐grained scale with a group of recently diverged species while controlling for environmental effects.

    We developed the tomato clade as a novel system for fruit trait evolution research by presenting the first common garden‐based systematic survey of variation and phylogenetic signal in color, nutrition, and morphology traits across all 13 species of tomato wild relatives (Solanum sect.Lycopersicon). We laid the groundwork for further testing of potential evolutionary drivers by assessing patterns of clustering and correlation among disperser‐relevant fruit traits as well as historical climate variables.

    We found evidence of two distinct clusters of associated fruit traits defined by color, sugar type, and malic acid concentration. We also observed correlations between a fruit's external appearance and internal nutrient content that could function as honest signals to dispersers. Analyses of historical climate and soil variables revealed an association between red/orange/yellow fruits and high annual average temperature.

    Our results establish the tomato clade as a promising system for testing hypotheses on the drivers of divergence behind early‐stage fleshy fruit evolution, particularly selective pressure from frugivores.

     
    more » « less
  2. Many species exhibit color polymorphisms which have distinct physiological and behavioral characteristics. However, the consistency of morph trait covariation patterns across species, time, and ecological contexts remains unclear. This trait covariation is especially relevant in the context of invasion biology and urban adaptation. Specifically, physiological traits pertaining to energy maintenance are crucial to fitness, given their immediate ties to individual reproduction, growth, and population establishment. We investigated the physiological traits ofPodarcis muralis, a versatile color polymorphic species that thrives in urban environments (including invasive populations in Ohio, USA). We measured five physiological traits (plasma corticosterone and triglycerides, hematocrit, body condition, and field body temperature), which compose an integrated multivariate phenotype. We then tested variation among co‐occurring color morphs in the context of establishment in an urban environment. We found that the traits describing physiological status and strategy shifted across the active season in a morph‐dependent manner—the white and yellow morphs exhibited clearly different multivariate physiological phenotypes, characterized primarily by differences in plasma corticosterone. This suggests that morphs have different strategies in physiological regulation, the flexibility of which is crucial to urban adaptation. The white‐yellow morph exhibited an intermediate phenotype, suggesting an intermediary energy maintenance strategy. Orange morphs also exhibited distinct phenotypes, but the low prevalence of this morph in our study populations precludes clear interpretation. Our work provides insight into how differences among stable polymorphisms exist across axes of the phenotype and how this variation may aid in establishment within novel environments. 
    more » « less
  3. Abstract

    Introductions of invasive species to new environments often result in rapid rates of trait evolution. While in some cases these evolutionary transitions are adaptive and driven by natural selection, they can also result from patterns of genetic and phenotypic variation associated with the invasion history. Here, we examined the brown anole (Anolis sagrei), a widespread invasive lizard for which genetic data have helped trace the sources of non‐native populations. We focused on the dewlap, a complex signalling trait known to be subject to multiple selective pressures. We measured dewlap reflectance, pattern and size in 30 non‐native populations across the southeastern United States. As well, we quantified environmental variables known to influence dewlap signal effectiveness, such as canopy openness. Further, we used genome‐wide data to estimate genetic ancestry, perform association mapping and test for signatures of selection. We found that among‐population variation in dewlap characteristics was best explained by genetic ancestry. This result was supported by genome‐wide association mapping, which identified several ancestry‐specific loci associated with dewlap traits. Despite the strong imprint of this aspect of the invasion history on dewlap variation, we also detected significant relationships between dewlap traits and local environmental conditions. However, we found limited evidence that dewlap‐associated genetic variants have been subject to selection. Our study emphasizes the importance of genetic ancestry and admixture in shaping phenotypes during biological invasion, while leaving the role of selection unresolved, likely due to the polygenic genetic architecture of dewlaps and selection acting on many genes of small effect.

     
    more » « less
  4. Abstract

    Understanding how natural selection acts on the genome and contributes to the process of speciation is a primary aim of the study of evolution. Here we used natural variation in two subspecies of the Guadeloupean anole (Anolis marmoratusssp.), from the island of Guadeloupe in the Lesser Antilles, to explore the genomic basis of adaptation and speciation inAnolislizards. These subspecies inhabit distinct ecological environments and display marked differences in adult male color and pattern. We sequenced the complete genomes of 20 anoles, 10 from each subspecies, at 1.4× coverage. We used genome‐wide scans of population differentiation, allele frequency spectrum, and linkage disequilibrium to characterize the genomic architecture within and between the subspecies. While most of the genome was undifferentiated, we observed five large divergent regions. Within these regions we identified blocks, 5 kb pairs in length, enriched for fixed single nucleotide polymorphisms. These blocks encompass 97 genes, two of which are candidate pigmentation genes. One is melanophilin (mlph), which helps transport melanosomes within melanocytes. The other is a cluster of differentiation 36 (cd36), which regulates carotenoid pigment sequestration. We used high‐pressure liquid chromatography to confirm that carotenoid pigments are significantly more abundant in the conspicuous orange‐pigmented skin of maleA. m. marmoratussuggesting thatcd36may be regulating pigment deposition in this tissue. We identified for the first time a carotenoid gene that is a potential target of divergent sexual selection and may be contributing to the early stages of speciation inAnolislizards.

     
    more » « less
  5. Abstract

    Variation in color morph behavior is an important factor in the maintenance of color polymorphism. Alternative anti-predator behaviors are often associated with morphological traits such as coloration, possibly because predator-mediated viability selection favors certain combinations of anti-predator behavior and color. The Aegean wall lizard,Podarcis erhardii, is color polymorphic and populations can have up to three monochromatic morphs: orange, yellow, and white. We investigated whether escape behaviors differ among coexisting color morphs, and if morph behaviors are repeatable across different populations with the same predator species. Specifically, we assessed color morph flight initiation distance (FID), distance to the nearest refuge (DNR), and distance to chosen refuge (DR) in two populations of Aegean wall lizards from Naxos island. We also analyzed the type of refugia color morphs selected and their re-emergence behavior following a standardized approach. We found that orange morphs have different escape behaviors from white and yellow morphs, and these differences are consistent in both populations we sampled. Orange morphs have shorter FIDs, DNRs, and DRs; select different refuge types; and re-emerge less often after being approached compared to white and yellow morphs. Observed differences in color morph escape behaviors support the idea that morphs have evolved alternative behavioral strategies that may play a role in population-level morph maintenance and loss.

    Significance statement

    Color polymorphic species often differ in behaviors related to reproduction, but differences in other behaviors are relatively underexplored. In this study, we use an experimental approach in two natural populations of color populations of color polymorphic lizards to determine that color morphs have diverged in their escape behaviors. By conducting our experiments in two different populations with similar predator regimes, we show for the first time that behavioral differences among intra-specific color morphs are repeatable across populations, suggesting that alternative behavioral strategies have evolved in this species. Using this experimental approach, we demonstrate that the brightest orange morph stays closer to refuge than other morphs, uses a different refuge type (vegetation) more often than other morphs (wall crevices), and take much longer to emerge from refuge after a simulated predation event than other morphs. Thus, selective pressures from visual predators may differ between morphs and play a role in the evolution and maintenance of color polymorphisms in these types of systems. Our study species,Podarcis erhardii, belongs to a highly color polymorphic genus (19/23 spp. are color polymorphic) that contains the same three color morphs, thus we believe our results may be relevant to more than justP.erhardii.

     
    more » « less