skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Neutrino constraints on inelastic dark matter captured in the Sun
Abstract The flux of neutrinos from annihilation of gravitationally captured dark matter in the Sun has significant constraints from direct-detection experiments. However, these constraints are relaxed for inelastic dark matter as inelastic dark matter interactions generate less energetic nuclear recoils compared to elastic dark matter interactions. In this paper, we explore the possibility for large volume underground neutrino experiments to detect the neutrino flux from captured inelastic dark matter in the Sun. The neutrino spectrum has two components: a mono-energetic “spike” from pion and kaon decays at rest and a broad-spectrum “shoulder” from prompt primary meson decays. We focus on detecting the shoulder neutrinos from annihilation of hadrophilic inelastic dark matter with masses in the range 4–100 GeV and the mass splittings in up to 300 keV. We determine the event selection criterion for DUNE to identify GeV-scale muon neutrinos and anti-neutrinos originating from hadrophilic dark matter annihilation in the Sun, and forecast the sensitivity from contained events. We also map the current bounds from Super-Kamiokande and IceCube on elastic dark matter, as well as the projected limits from Hyper-Kamiokande, to the parameter space of inelastic dark matter. We find that there is a region of parameter space that these neutrino experiments are more sensitive to than the direct-detection experiments. For dark matter annihilation to heavy-quarks, the projected sensitivity of DUNE is weaker than current (future) Super (Hyper) Kamiokande experiments. However, for the light-quark channel, only the spike is observable and DUNE will be the most sensitive experiment.  more » « less
Award ID(s):
2309967
PAR ID:
10504050
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
IOP Science, SISSA
Date Published:
Journal Name:
Journal of Cosmology and Astroparticle Physics
Volume:
2024
Issue:
01
ISSN:
1475-7516
Page Range / eLocation ID:
030
Subject(s) / Keyword(s):
inelastic dark matter, Hyper-Kamiokande, DUNE, indirect dark matter searches, neutrinos
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract We discuss JUNO sensitivity to the annihilation of MeV dark matter in the galactic halo via detecting inverse beta decay reactions of electron anti-neutrinos resulting from the annihilation. We study possible backgrounds to the signature, including the reactor neutrinos, diffuse supernova neutrino background, charged- and neutral-current interactions of atmospheric neutrinos, backgrounds from muon-induced fast neutrons and cosmogenic isotopes. A fiducial volume cut, as well as the pulse shape discrimination and the muon veto are applied to suppress the above backgrounds. It is shown that JUNO sensitivity to the thermally averaged dark matter annihilation rate in 10 years of exposure would be significantly better than the present-day best limit set by Super-Kamiokande and would be comparable to that expected by Hyper-Kamiokande. 
    more » « less
  2. null (Ed.)
    ABSTRACT We present a new method by which to retrieve energy spectrum for all falvours of neutrinos from core-collapse supernova (CCSN). In the retrieval process, we do not assume any analytic formulas to express the energy spectrum of neutrinos but rather take a direct way of spectrum reconstruction from the observed data; the singular value decomposition algorithm with a newly developed adaptive energy-gridding technique is adopted. We employ three independent reaction channels having different flavour sensitivity to neutrinos. Two reaction channels, inverse beta decay on proton and elastic scattering on electrons, from a water Cherenkov detector such as Super-Kamiokande (SK) and Hyper-Kamiokande (HK), and a charged current reaction channel with Argon from the Deep Underground Neutrino Experiment (DUNE) are adopted. Given neutrino oscillation models, we iteratively search the neutrino energy spectra at the CCSN source until they provide the consistent event counts in the three reaction channels. We test the capability of our method by demonstrating the spectrum retrieval to a theoretical neutrino data computed by our recent three-dimensional CCSN simulation. Although the energy spectrum with either electron-type or electron-type antineutrinos at the CCSN source has relatively large error compared to that of other species, the joint analysis with HK + DUNE or SK + DUNE will provide precise energy spectrum of all flavours of neutrinos at the source. Finally, we discuss perspectives for improvements of our method by using neutrino data of other detectors. 
    more » « less
  3. Abstract Thermal MeV neutrino emission from core-collapse supernovae offers a unique opportunity to probe physics beyond the Standard Model in the neutrino sector. The next generation of neutrino experiments, such as DUNE and Hyper-Kamiokande, can detect 𝒪(10 3 ) and 𝒪(10 4 ) neutrinos in the event of a Galactic supernova, respectively. As supernova neutrinos propagate to Earth, they may interact with the local dark matter via hidden mediators and may be delayed with respect to the initial neutrino signal. We show that for sub-MeV dark matter, the presence of dark matter-neutrino interactions may lead to neutrino echoes with significant time delays. The absence or presence of this feature in the light curve of MeV neutrinos from a supernova allows us to probe parameter space that has not been explored by dark matter direct detection experiments. 
    more » « less
  4. The indirect detection of dark matter (DM) through its annihilation products is one of the primary strategies for DM detection. One of the least constrained classes of models is neutrinophilic DM, because the annihilation products, weakly interacting neutrinos, are challenging to observe. Here, we consider a scenario where MeV-mass DM exclusively annihilates to the third neutrino mass eigenstate, which is predominantly of tau and muon flavor. In such a scenario, the potential detection rate of the neutrinos originating from the DM annihilation in our Galaxy in the conventional detectors would be suppressed by up to approximately two orders of magnitude. This is because the best sensitivity of such detectors for neutrinos with energies below approximately 100 MeV is for electron neutrino flavor. In this work, we highlight the potential of large-scale DM detectors in uncovering such signals in the tens of MeV range of DM masses. In addition, we discuss how coincident signals in direct detection DM experiments and upcoming neutrino detectors such as DUNE, Hyper-Kamiokande, and JUNO could provide new perspectives on the DM problem. Published by the American Physical Society2025 
    more » « less
  5. We introduce and study the first class of signals that can probe the dark matter in mesogenesis, which will be observable at current and upcoming large volume neutrino experiments. The well-motivated mesogenesis scenario for generating the observed matter-antimatter asymmetry necessarily has dark matter charged under the baryon number. Interactions of these particles with nuclei can induce nucleon decay with kinematics differing from spontaneous nucleon decay. We calculate the rate for this process and develop a simulation of the signal that includes important distortions due to nuclear effects. We estimate the sensitivity of DUNE, Super-Kamiokande, Hyper-Kamiokande, and JUNO to this striking signal. Published by the American Physical Society2024 
    more » « less