skip to main content

Title: Retrieval of energy spectra for all flavours of neutrinos from core-collapse supernova with multiple detectors
ABSTRACT We present a new method by which to retrieve energy spectrum for all falvours of neutrinos from core-collapse supernova (CCSN). In the retrieval process, we do not assume any analytic formulas to express the energy spectrum of neutrinos but rather take a direct way of spectrum reconstruction from the observed data; the singular value decomposition algorithm with a newly developed adaptive energy-gridding technique is adopted. We employ three independent reaction channels having different flavour sensitivity to neutrinos. Two reaction channels, inverse beta decay on proton and elastic scattering on electrons, from a water Cherenkov detector such as Super-Kamiokande (SK) and Hyper-Kamiokande (HK), and a charged current reaction channel with Argon from the Deep Underground Neutrino Experiment (DUNE) are adopted. Given neutrino oscillation models, we iteratively search the neutrino energy spectra at the CCSN source until they provide the consistent event counts in the three reaction channels. We test the capability of our method by demonstrating the spectrum retrieval to a theoretical neutrino data computed by our recent three-dimensional CCSN simulation. Although the energy spectrum with either electron-type or electron-type antineutrinos at the CCSN source has relatively large error compared to that of other species, the joint analysis with HK more » + DUNE or SK + DUNE will provide precise energy spectrum of all flavours of neutrinos at the source. Finally, we discuss perspectives for improvements of our method by using neutrino data of other detectors. « less
Authors:
Award ID(s):
1804048
Publication Date:
NSF-PAR ID:
10300081
Journal Name:
Monthly Notices of the Royal Astronomical Society
Volume:
500
Issue:
1
Page Range or eLocation-ID:
319 to 332
ISSN:
0035-8711
Sponsoring Org:
National Science Foundation
More Like this
  1. ABSTRACT Based on our recent three-dimensional core-collapse supernova (CCSN) simulations including both exploding and non-exploding models, we study the detailed neutrino signals in representative terrestrial neutrino observatories, namely Super-Kamiokande (Hyper-Kamiokande), DUNE, JUNO, and IceCube. We find that the physical origin of difference in the neutrino signals between 1D and 3D is mainly proto-neutron-star convection. We study the temporal and angular variations of the neutrino signals and discuss the detectability of the time variations driven by the spiral standing accretion shock instability (spiral SASI) when it emerges for non-exploding models. In addition, we determine that there can be a large angularmore »asymmetry in the event rate (${\gtrsim} 50 {{\ \rm per\ cent}}$), but the time-integrated signal has a relatively modest asymmetry (${\lesssim} 20 {{\ \rm per\ cent}}$). Both features are associated with the lepton-number emission self-sustained asymmetry and the spiral SASI. Moreover, our analysis suggests that there is an interesting correlation between the total neutrino energy (TONE) and the cumulative number of neutrino events in each detector, a correlation that can facilitate data analyses of real observations. We demonstrate the retrieval of neutrino energy spectra for all flavours of neutrino by applying a novel spectrum reconstruction technique to the data from multiple detectors. We find that this new method is capable of estimating the TONE within the error of ∼20 per cent if the distance to the CCSN is ≲6 kpc.« less
  2. A search for neutrinos produced in coincidence with gamma-ray bursts (GRBs) was conducted with the Super-Kamiokande (SK) detector. Between December 2008 and March 2017, the Gamma-ray Coordinates Network recorded 2208 GRBs that occurred during normal SK operation. Several time windows around each GRB were used to search for coincident neutrino events. No statistically significant signal in excess of the estimated backgrounds was detected. For all GRBs, upper bounds were obtained on the fluence as a function of neutrino energy. Additionally, for GRBs at known distances, upper limits were set for the neutrino energy emission at the GRB.
  3. Abstract We detail the sensitivity of the proposed liquid xenon DARWIN observatory to solar neutrinos via elastic electron scattering. We find that DARWIN will have the potential to measure the fluxes of five solar neutrino components: pp , $$^7$$ 7 Be, $$^{13}$$ 13 N, $$^{15}$$ 15 O and pep . The precision of the $$^{13}$$ 13 N, $$^{15}$$ 15 O and pep components is hindered by the double-beta decay of $$^{136}$$ 136 Xe and, thus, would benefit from a depleted target. A high-statistics observation of pp neutrinos would allow us to infer the values of the electroweak mixing angle, $$\sinmore »^2\theta _w$$ sin 2 θ w , and the electron-type neutrino survival probability, $$P_{ee}$$ P ee , in the electron recoil energy region from a few keV up to 200 keV for the first time, with relative precision of 5% and 4%, respectively, with 10 live years of data and a 30 tonne fiducial volume. An observation of pp and $$^7$$ 7 Be neutrinos would constrain the neutrino-inferred solar luminosity down to 0.2%. A combination of all flux measurements would distinguish between the high- (GS98) and low-metallicity (AGS09) solar models with 2.1–2.5 $$\sigma $$ σ significance, independent of external measurements from other experiments or a measurement of $$^8$$ 8 B neutrinos through coherent elastic neutrino-nucleus scattering in DARWIN. Finally, we demonstrate that with a depleted target DARWIN may be sensitive to the neutrino capture process of $$^{131}$$ 131 Xe.« less
  4. Metal-ion batteries (e.g., lithium and sodium ion batteries) are the promising power sources for portable electronics, electric vehicles, and smart grids. Recent metal-ion batteries with organic liquid electrolytes still suffer from safety issues regarding inflammability and insufficient lifetime.1 As the next generation energy storage devices, all-solid-state batteries (ASSBs) have promising potentials for the improved safety, higher energy density, and longer cycle life than conventional Li-ion batteries.2 The nonflammable solid electrolytes (SEs), where only Li ions are mobile, could prevent battery combustion and explosion since the side reactions that cause safety issues as well as degradation of the battery performance aremore »largely suppressed. However, their practical application is hampered by the high resistance arising at the solid–solid electrode–electrolyte interface (including cathode-electrolyte interface and anode-electrolyte interface).3 Several methods have been introduced to optimize the contact capability as well as the electrochemical/chemical stability between the metal anodes (i.e.: Li and Na) and the SEs, which exhibited decent results in decreasing the charge transfer resistance and broadening the range of the stable energy window (i.e., lowing the chemical potential of metal anode below the highest occupied molecular orbital of the SEs).4 Nevertheless, mitigation for the cathode in ASSB is tardily developed because: (1) the porous structure of the cathode is hard to be infiltrated by SEs;5 (2) SEs would be oxidized and decomposed by the high valence state elements at the surface of the cathode at high state of charge.5 Herein, we demonstrate a universal cathode design strategy to achieve superior contact capability and high electrochemical/chemical stability with SEs. Stereolithography is adopted as a manufacturing technique to realize a hierarchical three-dimensional (HTD) electrode architecture with micro-size channels, which is expected to provide larger contact areas with SEs. Then, the manufactured cathode is sintered at 700 °C in a reducing atmosphere (e.g.: H2) to accomplish the carbonization of the resin, delivering sufficiently high electronic conductivity for the cathode. To avoid the direct exposure of the cathode active materials to the SEs, oxidative chemical vapor deposition technique (oCVD) is leveraged to build conformal and highly conducting poly(3,4-ethylenedioxythiophene) (PEDOT) on the surface of the HTD cathode.6 To demonstrate our design strategy, both NCM811 and Na3V2(PO4)3 is selected as active materials in the HTD cathode, then each cathode is paired with organic (polyacrylonitrile-based) and inorganic (sulfur-based) SEs assembled into two batteries (total four batteries). SEM and TEM reveal the micro-size HTD structure with built-in channels. Featured by the HTD architecture, the intrinsic kinetic and thermodynamic conditions will be enhanced by larger surface contact areas, more active sites, improved infusion and electrolyte ion accessibility, and larger volume expansion capability. Disclosed by X-ray computed tomography, the interface between cathode and SEs in the four modified samples demonstrates higher homogeneity at the interface between the cathode and SEs than that of all other pristine samples. Atomic force microscopy is employed to measure the potential image of the cross-sectional interface by the peak force tapping mode. The average potential of modified samples is lower than that of pristine samples, which confirms a weakened space charge layer by the enhanced contact capability. In addition, through Electron Energy Loss Spectroscopy coupled with Scanning Transmission Electron Microscopy, the preserved interface between HTD cathode and SE is identified; however, the decomposing of the pristine cathode is clearly observed. In addition, Finite element method simulations validate that the diffusion dynamics of lithium ions is favored by HTD structure. Such a demonstrated universal strategy provides a new guideline to engineer cathode electrolyte interface by reconstructing electrode structures that can be applicable to all solid-state batteries in a wide range of chemical conditions.« less
  5. A bstract Neutrino non-standard interactions (NSI) with the first generation of standard model fermions can span a parameter space of large dimension and exhibit degeneracies that cannot be broken by a single class of experiment. Oscillation experiments, together with neutrino scattering experiments, can merge their observations into a highly informational dataset to combat this problem. We consider combining neutrino-electron and neutrino-nucleus scattering data from the Borexino and COHERENT experiments, including a projection for the upcoming coherent neutrino scattering measurement at the CENNS-10 liquid argon detector. We extend the reach of these data sets over the NSI parameter space with projectionsmore »for neutrino scattering at a future multi-ton scale dark matter detector and future oscillation measurements from atmospheric neutrinos at the Deep Underground Neutrino Experiment (DUNE). In order to perform this global anal- ysis, we adopt a novel approach using the copula method, utilized to combine posterior information from different experiments with a large, generalized set of NSI parameters. We find that the contributions from DUNE and a dark matter detector to the Borexino and COHERENT fits can improve constraints on the electron and quark NSI parameters by up to a factor of 2 to 3, even when relatively many NSI parameters are left free to vary in the analysis.« less