Abstract The supermassive black holes (MBH∼ 106–1010M⊙) that power luminous active galactic nuclei (AGNs), i.e., quasars, generally show a correlation between thermal disk emission in the ultraviolet (UV) and coronal emission in hard X-rays. In contrast, some “massive” black holes (mBHs;MBH∼ 105–106M⊙) in low-mass galaxies present curious X-ray properties with coronal radiative output up to 100× weaker than expected. To examine this issue, we present a pilot study incorporating Very Large Array radio observations of a sample of 18 high-accretion-rate (Eddington ratiosLbol/LEdd> 0.1), mBH-powered AGNs (MBH∼ 106M⊙) with Chandra X-ray coverage. Empirical correlations previously revealed in samples of radio-quiet, high-Eddington AGNs indicate that the radio–X-ray luminosity ratio,LR/LX, is approximately constant. Through multiwavelength analysis, we instead find that the X-ray-weaker mBHs in our sample tend toward larger values ofLR/LXeven though they remain radio-quiet per their optical–UV properties. This trend results in a tentative but highly intriguing correlation betweenLR/LXand X-ray weakness, which we argue is consistent with a scenario in which X-rays may be preferentially obscured from our line of sight by a “slim” accretion disk. We compare this observation to weak emission-line quasars (AGNs with exceptionally weak broad-line emission and a significant X-ray-weak fraction) and conclude by suggesting that our results may offer a new observational signature for finding high-accretion-rate AGNs.
more »
« less
No X-Rays or Radio from the Nearest Black Holes and Implications for Future Searches
Abstract Astrometry from the Gaia mission was recently used to discover the two nearest known stellar-mass black holes (BHs), Gaia BH1 and Gaia BH2. These objects are among the first stellar-mass BHs not discovered via X-rays or gravitational waves. Both systems contain ∼1M⊙stars in wide orbits (a≈ 1.4 au, 4.96 au) around ∼9M⊙BHs, with both stars (solar-type main sequence star, red giant) well within their Roche lobes in Gaia BH1 and BH2, respectively. However, the BHs are still expected to accrete stellar winds, leading to potentially detectable X-ray or radio emission. Here, we report observations of both systems with the Chandra X-ray Observatory, the Very Large Array (for Gaia BH1) and MeerKAT (for Gaia BH2). We did not detect either system, leading to X-ray upper limits ofLX< 9.4 × 1028andLX< 4.0 × 1029erg s−1and radio upper limits ofLr< 1.6 × 1025andLr< 1.0 × 1026erg s−1for Gaia BH1 and BH2, respectively. For Gaia BH2, the non-detection implies that the accretion rate near the horizon is much lower than the Bondi rate, consistent with recent models for hot accretion flows. We discuss implications of these non-detections for broader BH searches, concluding that it is unlikely that isolated BHs will be detected via interstellar medium accretion in the near future. We also calculate evolutionary models for the binaries’ future evolution using Modules for Experiments in Stellar Astrophysics, and find that Gaia BH1 will be visible as a symbiotic BH X-ray binary for 5–50 Myr. Since no symbiotic BH X-ray binaries are known, this implies either that fewer than ∼104Gaia BH1-like binaries exist in the Milky Way, or that they are common but have evaded detection.
more »
« less
- Award ID(s):
- 2307232
- PAR ID:
- 10504051
- Publisher / Repository:
- IOP Publishing Ltd
- Date Published:
- Journal Name:
- Publications of the Astronomical Society of the Pacific
- Volume:
- 136
- Issue:
- 2
- ISSN:
- 0004-6280
- Page Range / eLocation ID:
- 024203
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract The ability to accurately discern active massive black holes (BHs) in nearby dwarf galaxies is paramount to understanding the origins and processes of “seed” BHs in the early Universe. We present Chandra X-ray Observatory observations of a sample of three local dwarf galaxies (M*≤ 3 × 109M⊙,z≤ 0.15) previously identified as candidates for hosting active galactic nuclei (AGN). The galaxies were selected from the NASA-Sloan Atlas with spatially coincident X-ray detections in the eROSITA Final Equatorial Depth Survey. Our new Chandra data reveal three X-ray point sources in two of the target galaxies with luminosities between log(L2−10 keV[erg s−1]) = 39.1 and 40.4. Our results support the presence of an AGN in these two galaxies and an ultraluminous X-ray source (ULX) in one of them. For the AGNs, we estimate BH masses ofMBH∼ 105−6M⊙and Eddington ratios on the order of ∼10−3.more » « less
-
Context.The detection of supermassive black holes (SMBHs) in high-redshift luminous quasars may require a phase of rapid accretion, and as a precondition, substantial gas influx toward seed black holes (BHs) from kiloparsec or parsec scales. Our previous research demonstrated the plausibility of such gas supply for BH seeds within star-forming giant molecular clouds (GMCs) with high surface density (∼104 M⊙ pc−2), facilitating “hyper-Eddington” accretion via efficient feeding by dense clumps, which are driven by turbulence and stellar feedback. Aims.This article presents an investigation of the impacts of feedback from accreting BHs on this process, including radiation, mechanical jets, and highly relativistic cosmic rays. Methods.We ran a suite of numerical simulations to explore diverse parameter spaces of BH feedback, including the subgrid accretion model, feedback energy efficiency, mass loading factor, and initial metallicity. Results.Using radiative feedback models inferred from the slim disk, we find that hyper-Eddington accretion is still achievable, yielding BH bolometric luminosities of as high as 1041 − 1044 erg/s, depending on the GMC properties and specific feedback model assumed. We find that the maximum possible mass growth of seed BHs (ΔMmaxBH) is regulated by the momentum-deposition rate from BH feedback,ṗfeedback/(ṀBHc), which leads to an analytic scaling that agrees well with simulations. This scenario predicts the rapid formation of ∼104M⊙intermediate-massive BHs (IMBHs) from stellar-mass BHs within ∼1 Myr. Furthermore, we examine the impacts of subgrid accretion models and how BH feedback may influence star formation within these cloud complexes.more » « less
-
Abstract We present results from a search for radio emission in 77 stellar systems hosting 140 exoplanets, predominantly within 17.5 pc using the Very Large Array (VLA) at 4–8 GHz. This is the largest and most sensitive search to date for radio emission in exoplanetary systems in the GHz frequency range. We obtained new observations of 58 systems and analyzed archival observations of an additional 19 systems. Our choice of frequency and volume limit is motivated by radio detections of ultracool dwarfs (UCDs), including T dwarfs with masses at the exoplanet threshold of ∼13MJ. Our surveyed exoplanets span a mass range of ≈10−3–10MJand semimajor axes of ≈10−2–10 au. We detect a single target—GJ 3323 (M4) hosting two exoplanets with minimum masses of 2 and 2.3M⊕—with a circular polarization fraction of ≈40%; the radio luminosity agrees with its known X-ray luminosity and the Güdel–Benz relation for stellar activity suggesting a likely stellar origin, but the high circular polarization fraction may also be indicative of star–planet interaction. For the remaining sources our 3σupper limits are generallyLν≲ 1012.5erg s−1Hz−1, comparable to the lowest radio luminosities in UCDs. Our results are consistent with previous targeted searches of individual systems at GHz frequencies while greatly expanding the sample size. Our sensitivity is comparable to predicted fluxes for some systems considered candidates for detectable star–planet interaction. Observations with future instruments such as the Square Kilometre Array and Next-Generation VLA will be necessary to further constrain emission mechanisms from exoplanet systems at GHz frequencies.more » « less
-
Abstract We present the discovery of a luminous X-ray active galactic nucleus (AGN) in the dwarf galaxy merger RGG 66. The black hole is predicted to have a mass ofMBH∼ 105.4M⊙and to be radiating close to its Eddington limit (Lbol/LEdd∼ 0.75). The AGN in RGG 66 is notable both for its presence in a late-stage dwarf–dwarf merger and for its luminosity ofL2–10 keV= 1042.2erg s−1, which is among the most powerful AGNs known in nearby dwarf galaxies. The X-ray spectrum has a best-fit photon index of Γ = 2.4 and an intrinsic absorption ofNH∼ 1021cm−2. These results come from a follow-up Chandra X-ray Observatory study of four irregular/disturbed dwarf galaxies with evidence for hosting AGNs based on optical spectroscopy. The remaining three dwarf galaxies do not have detectable X-ray sources with upper limits ofL2–10 keV≲ 1040erg s−1. Taken at face value, our results on RGG 66 suggest that mergers may trigger the most luminous of AGNs in the dwarf galaxy regime, just as they are suspected to do in more massive galaxy mergers.more » « less
An official website of the United States government

