Abstract We present the discovery of a luminous X-ray active galactic nucleus (AGN) in the dwarf galaxy merger RGG 66. The black hole is predicted to have a mass ofMBH∼ 105.4M⊙and to be radiating close to its Eddington limit (Lbol/LEdd∼ 0.75). The AGN in RGG 66 is notable both for its presence in a late-stage dwarf–dwarf merger and for its luminosity ofL2–10 keV= 1042.2erg s−1, which is among the most powerful AGNs known in nearby dwarf galaxies. The X-ray spectrum has a best-fit photon index of Γ = 2.4 and an intrinsic absorption ofNH∼ 1021cm−2. These results come from a follow-up Chandra X-ray Observatory study of four irregular/disturbed dwarf galaxies with evidence for hosting AGNs based on optical spectroscopy. The remaining three dwarf galaxies do not have detectable X-ray sources with upper limits ofL2–10 keV≲ 1040erg s−1. Taken at face value, our results on RGG 66 suggest that mergers may trigger the most luminous of AGNs in the dwarf galaxy regime, just as they are suspected to do in more massive galaxy mergers.
more »
« less
A Deeper Look into eFEDS AGN Candidates in Dwarf Galaxies with Chandra
Abstract The ability to accurately discern active massive black holes (BHs) in nearby dwarf galaxies is paramount to understanding the origins and processes of “seed” BHs in the early Universe. We present Chandra X-ray Observatory observations of a sample of three local dwarf galaxies (M*≤ 3 × 109M⊙,z≤ 0.15) previously identified as candidates for hosting active galactic nuclei (AGN). The galaxies were selected from the NASA-Sloan Atlas with spatially coincident X-ray detections in the eROSITA Final Equatorial Depth Survey. Our new Chandra data reveal three X-ray point sources in two of the target galaxies with luminosities between log(L2−10 keV[erg s−1]) = 39.1 and 40.4. Our results support the presence of an AGN in these two galaxies and an ultraluminous X-ray source (ULX) in one of them. For the AGNs, we estimate BH masses ofMBH∼ 105−6M⊙and Eddington ratios on the order of ∼10−3.
more »
« less
- Award ID(s):
- 2235277
- PAR ID:
- 10546145
- Publisher / Repository:
- DOI PREFIX: 10.3847
- Date Published:
- Journal Name:
- The Astrophysical Journal
- Volume:
- 974
- Issue:
- 1
- ISSN:
- 0004-637X
- Format(s):
- Medium: X Size: Article No. 3
- Size(s):
- Article No. 3
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract We explore the characteristics of actively accreting massive black holes (MBHs) within dwarf galaxies in the Romulus25cosmological hydrodynamic simulation. We examine the MBH occupation fraction, X-ray active fractions, and active galactic nucleus (AGN) scaling relations within dwarf galaxies of stellar mass 108M⊙<Mstar< 1010M⊙out to redshiftz= 2. In the local universe, the MBH occupation fraction is consistent with observed constraints, dropping below unity atMstar< 3 × 1010M⊙,M200< 3 × 1011M⊙. Local dwarf AGN in Romulus25follow observed scaling relations between AGN X-ray luminosity, stellar mass, and star formation rate, though they exhibit slightly higher active fractions and number densities than comparable X-ray observations. Sincez= 2, the MBH occupation fraction has decreased, the population of dwarf AGN has become overall less luminous, and as a result the overall number density of dwarf AGN has diminished. We predict the existence of a large population of MBHs in the local universe with low X-ray luminosities and high contamination from X-ray binaries and the hot interstellar medium that are undetectable by current X-ray surveys. These hidden MBHs make up 76% of all MBHs in local dwarf galaxies and include many MBHs that are undermassive relative to their host galaxy’s stellar mass. Their detection relies on not only greater instrument sensitivity but also better modeling of X-ray contaminants or multiwavelength surveys. Our results indicate that dwarf AGN were substantially more active in the past, despite having low luminosity today, and that future deep X-ray surveys may uncover many hidden MBHs in dwarf galaxies out to at leastz= 2.more » « less
-
Abstract We present the first X-ray census of fast radio burst (FRB) host galaxies to conduct the deepest search for active galactic nuclei (AGN) and X-ray counterparts to date. Our sample includes seven well-localized FRBs with unambiguous host associations and existing deep Chandra observations, including two events for which we present new observations. We find evidence for AGN in two FRB host galaxies based on the presence of X-ray emission coincident with their centers, including the detection of a luminous (LX≈ 5 × 1042erg s−1) X-ray source at the nucleus of FRB 20190608B’s host, for which we infer an SMBH mass ofMBH∼ 108M⊙and an Eddington ratioLbol/LEdd≈ 0.02, characteristic of geometrically thin disks in Seyfert galaxies. We also report nebular emission-line fluxes for 24 highly secure FRB hosts (including 10 hosts for the first time), and assess their placement on a BPT diagram, finding that FRB hosts trace the underlying galaxy population. We further find that the hosts of repeating FRBs are not confined to the star-forming locus, contrary to previous findings. Finally, we place constraints on associated X-ray counterparts to FRBs in the context of ultraluminous X-ray sources (ULXs), and find that existing X-ray limits for FRBs rule out ULXs brighter thanLX≳ 1040erg s−1. Leveraging the CHIME/FRB catalog and existing ULX catalogs, we search for spatially coincident ULX–FRB pairs. We identify a total of 28 ULXs spatially coincident with the localization regions for 17 FRBs, but find that the DM-inferred redshifts for the FRBs are inconsistent with the ULX redshifts, disfavoring an association between these specific ULX–FRB pairs.more » « less
-
Abstract Effectively finding and identifying active galactic nuclei (AGNs) in dwarf galaxies is an important step in studying black hole formation and evolution. In this work, we examine four mid-infrared (IR)-selected AGN candidates in dwarf galaxies with stellar masses betweenM⋆ ~ 108and 109M⊙and find that the galaxies are host to nuclear star clusters (NSCs) that are notably rare in how young and massive they are. We perform photometric measurements on the central star clusters in our target galaxies using Hubble Space Telescope optical and near-IR imaging and compare their observed properties to models of stellar population evolution. We find that these galaxies are host to very massive (~107M⊙), extremely young (≲8 Myr), and dusty (0.6 ≲ Av ≲ 1.8) NSCs. Our results indicate that these galactic nuclei have ongoing star formation, are still at least partially obscured by clouds of gas and dust, and are most likely producing the extremely red AGN-like mid-IR colors. Moreover, prior work has shown that these galaxies do not exhibit X-ray or optical AGN signatures. Therefore, we recommend caution when using mid-IR color–color diagnostics for AGN selection in dwarf galaxies, since, as directly exemplified in this sample, they can be contaminated by massive star clusters with ongoing star formation.more » « less
-
Abstract Astrometry from the Gaia mission was recently used to discover the two nearest known stellar-mass black holes (BHs), Gaia BH1 and Gaia BH2. These objects are among the first stellar-mass BHs not discovered via X-rays or gravitational waves. Both systems contain ∼1M⊙stars in wide orbits (a≈ 1.4 au, 4.96 au) around ∼9M⊙BHs, with both stars (solar-type main sequence star, red giant) well within their Roche lobes in Gaia BH1 and BH2, respectively. However, the BHs are still expected to accrete stellar winds, leading to potentially detectable X-ray or radio emission. Here, we report observations of both systems with the Chandra X-ray Observatory, the Very Large Array (for Gaia BH1) and MeerKAT (for Gaia BH2). We did not detect either system, leading to X-ray upper limits ofLX< 9.4 × 1028andLX< 4.0 × 1029erg s−1and radio upper limits ofLr< 1.6 × 1025andLr< 1.0 × 1026erg s−1for Gaia BH1 and BH2, respectively. For Gaia BH2, the non-detection implies that the accretion rate near the horizon is much lower than the Bondi rate, consistent with recent models for hot accretion flows. We discuss implications of these non-detections for broader BH searches, concluding that it is unlikely that isolated BHs will be detected via interstellar medium accretion in the near future. We also calculate evolutionary models for the binaries’ future evolution using Modules for Experiments in Stellar Astrophysics, and find that Gaia BH1 will be visible as a symbiotic BH X-ray binary for 5–50 Myr. Since no symbiotic BH X-ray binaries are known, this implies either that fewer than ∼104Gaia BH1-like binaries exist in the Milky Way, or that they are common but have evaded detection.more » « less
An official website of the United States government
