Abstract Plant functional strategies change considerably as plants develop, driven by intraindividual variability in anatomical, morphological, physiological and architectural traits.Developmental trait variation arises through the complex interplay among genetically regulated phase change (i.e. ontogeny), increases in plant age and size, and phenotypic plasticity to changing environmental conditions. Although spatial drivers of intraspecific trait variation have received extensive research attention, developmentally driven intraspecific trait variation is largely overlooked, despite widespread occurrence.Ontogenetic trait variation is genetically regulated, leads to dramatic changes in plant phenotypes and evolves in response to predictable changes in environmental conditions as plants develop.Evidence has accumulated to support a general shift from fast to slow relative growth rates and from shade to sun leaves as plants develop from the highly competitive but shady juvenile niche to the stressful adult niche in the systems studied to date.Nonetheless, there are major gaps in our knowledge due to examination of only a few environmental factors selecting for the evolution of ontogenetic trajectories, variability in how ontogeny is assigned, biogeographic sampling biases on trees in temperate biomes, dependencies on a few broadly sampled leaf morphological traits and a lack of longitudinal studies that track ontogeny within individuals. Filling these gaps will enhance our understanding of plant functional ecology and provide a framework for predicting the effects of global change threats that target specific ontogenetic stages. Read the freePlain Language Summaryfor this article on the Journal blog.
more »
« less
Mechanistic understanding of how temperature and its variability shape body size composition in moth assemblages
Abstract Understanding how climate affects trait composition within a biological assemblage is critical for assessing and eventually mitigating climate change impacts on the assemblage and its ecological functioning. While body size is a fundamental trait of animals as it affects many aspects of species' biology and ecology, it remains unclear through what mechanisms temperature and its variability influence within‐assemblage body size variation.This study aims to understand how temperature and its variability shape body size variations in animal assemblages and potentially affect assemblages' vulnerability to climate change. Using >5300 individuals of 680 macromoth species collected from 13 assemblages along a ca. 3000 m elevational gradient in Taiwan, we examined (1) the strength of environmental filtering and niche partitioning in determining the intra‐ and inter‐specific size variations within an assemblage, and (2) the effects of mean temperature and the daily and seasonal temperature variabilities on the strength of the two processes.We found that the body size composition was strongly affected by temperature and its seasonality via both processes. High temperature seasonality enhanced niche partitioning, causing within‐population size convergence. In contrast, low mean temperature and low seasonality both enhanced environmental filtering, causing within‐assemblage size convergence. However, while low temperature restricted the lower size limit within an assemblage, low seasonality restricted both lower and upper size limits.This study indicates an overlooked but important role of temperature seasonality in shaping intra‐ and inter‐specific size variations in moth assemblages through both environmental filtering and niche partitioning. With rising temperatures and amplifying seasonality around the globe, potentially weakened filtering forces may increase the size variation within assemblages, reinforcing the assemblage‐level resilience. Nevertheless, enhanced niche partitioning may limit size variation within populations, which may increase the population‐level vulnerability to environmental changes. This study improves the mechanistic understanding of the climatic effects on trait composition in animal assemblages and provides essential information for biodiversity conservation under climate change. Read the freePlain Language Summaryfor this article on the Journal blog.
more »
« less
- Award ID(s):
- 1828910
- PAR ID:
- 10525468
- Publisher / Repository:
- https://besjournals-onlinelibrary-wiley-com.proxy-um.researchport.umd.edu/doi/epdf/10.1111/1365-2435.14467
- Date Published:
- Journal Name:
- Functional Ecology
- Volume:
- 38
- Issue:
- 1
- ISSN:
- 0269-8463
- Page Range / eLocation ID:
- 206 to 218
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Biological assemblages in streams are influenced by hydrological dynamics, particularly in non‐perennial systems. Although there has been increasing attention on how drying impacts stream organisms, few studies have investigated how specific characteristics of drying and subsequent wetting transitions influence biotic responses via resistance and resilience traits.Here, we characterized how hydrologic metrics, including those quantifying drying and wetting transitions as well as dry and wet phases, alter diversity and composition of three aquatic assemblages in non‐perennial streams in southern California: benthic macroinvertebrates, soft‐bodied algae and diatoms.We found that flow duration prior to sampling was correlated with variation in macroinvertebrate and soft‐bodied algal assemblage composition. The composition and richness of diatom assemblages, however, were predominantly influenced by the drying start date prior to sampling. Contrary to other studies, the duration of the dry phase prior to sampling did not influence the composition or richness of any assemblage. Although our study was conducted within a region in which each assemblage experienced comparable environmental conditions, we found no single hydrologic metric that influenced all assemblages in the same way.The hot‐summer Mediterranean climate of southern California likely acts as a strong environmental filter, with taxa in this region relying on resistance and resilience adaptations to survive and recolonize non‐perennial streams following wetting. The different responses of algal and diatom assemblages to hydrologic metrics suggest greater resilience to drying and wetting events, particularly for primary producers.As drying and wetting patterns continue to change, understanding biodiversity responses to hydrologic metrics could inform management actions that enhance the ecological resilience of communities in non‐perennial streams. In particular, the creation and enhancement of flow regimes in which natural timing and duration of dry and wet phases sustain refuges that support community persistence in a changing environment.more » « less
-
Abstract The loose‐equilibrium concept (LEC) predicts that ecological assemblages change transiently but return towards an earlier or average structure. The LEC framework can help determine whether assemblages vary within expected ranges or are permanently altered following environmental change.Long‐lived, slow‐growing animals typically respond slowly to environmental change, and their assemblage dynamics may respond over decades, which transcends most ecological studies. Unionid mussels are valuable for studying dynamics of long‐lived animals because they can live >50 years and occur in dense, species‐rich assemblages (mussel beds). Mussel beds can persist for decades, but disturbance can affect species differently, resulting in variable trajectories according to differences in species composition within and among rivers.We used long‐term data sets (10–40 years) from seven rivers in the eastern United States to evaluate the magnitude, pace and directionality of mussel assemblage change within the context of the LEC.Site trajectories varied within and among streams and showed patterns consistent with either the LEC or directional change. In streams that conformed to the LEC, rank abundance of dominant species remained stable over time, but directional change in other streams was driven by changes in the rank abundance and composition of dominant species.Characteristics of mussel assemblage change varied widely, ranging from those conforming to the LEC to those showing strong directional change. Conservation approaches that attempt to maintain or create a desired assemblage condition should acknowledge this wide range of possible assemblage trajectories and that the environmental factors that influence those changes remain poorly understood.more » « less
-
Abstract Intraspecific trait variation (ITV) is an increasingly important aspect of biodiversity and can provide a more complete perspective on how abiotic and biotic processes affect individuals, species' niches and ultimately community‐level structure than traditional uses of trait means. Body size serves as a proxy for a suite of traits that govern species' niches. Distributions of co‐occurring species body sizes can inform niche overlap, relate to species richness and uncover mechanistic drivers of diversity.We leveraged individual‐level body size (length) in freshwater fishes and environmental data from the National Ecological Observatory Network (NEON) for 17 lakes and streams in the contiguous United States to explore how abiotic and biotic factors influence fish species richness and trait distributions of body size. We calculated key abiotic (climate, productivity, land use) and biotic (phylogenetic diversity, trait diversity, community‐level overlap of trait probability densities) variables for each site to test hypotheses about drivers of ITV in body size and fish diversity.Abiotic variables were consistently important in explaining variation in fish body size and species richness across sites. In particular, productivity (as chlorophyll) was a key variable in explaining variation in body size trait richness, evenness and divergence, as well as species richness.This study yields new insights into continental‐scale patterns of freshwater fishes, possible only by leveraging the paired high frequency, in situ abiotic data and individual‐level traits collected by NEON.more » « less
-
Abstract Climate change is stressing many forests around the globe, yet some tree species may be able to persist through acclimation and adaptation to new environmental conditions. The ability of a tree to acclimate during its lifetime through changes in physiology and functional traits, defined here as its acclimation potential, is not well known.We investigated the acclimation potential of trembling aspenPopulus tremuloidesand ponderosa pinePinus ponderosatrees by examining within‐species variation in drought response functional traits across both space and time, and how trait variation influences drought‐induced tree mortality. We measured xylem tension, morphological traits and physiological traits on mature trees in southwestern Colorado, USA across a climate gradient that spanned the distribution limits of each species and 3 years with large differences in climate.Trembling aspen functional traits showed high within‐species variation, and osmotic adjustment and carbon isotope discrimination were key determinants for increased drought tolerance in dry sites and in dry years. However, trembling aspen trees at low elevation were pushed past their drought tolerance limit during the severe 2018 drought year, as elevated mortality occurred. Higher specific leaf area during drought was correlated with higher percentages of canopy dieback the following year. Ponderosa pine functional traits showed less within‐species variation, though osmotic adjustment was also a key mechanism for increased drought tolerance. Remarkably, almost all traits varied more year‐to‐year than across elevation in both species.Our results shed light on the scope and limits of intraspecific trait variation for mediating drought responses in key southwestern US tree species and will help improve our ability to model and predict forest responses to climate change. Read the freePlain Language Summaryfor this article on the Journal blog.more » « less
An official website of the United States government

