Lake sediment records give valuable insight into the dynamic events that characterized the last deglaciation in Iceland. Here, we focus on the well‐dated sediment record from Hestvatn, a low‐elevation lake in south Iceland, that features six graded bedding events deposited by outburst floods from glacial lakes dammed by the decaying Iceland Ice Sheet (IIS) in the time period of the Vedde Ash and the G10ka Series tephra. Using climate proxies preserved in the sediment cores, in conjunction with regional glacial geomorphology, we reconstruct the retreat of the IIS in south Iceland, from a marine‐based glacier during the Younger Dryas to a land‐based glacier during the Preboreal. As the ice sheet margin withdrew to the central highlands, ice‐dammed lakes formed along glacier margins. The ice‐dams were occasionally breached, generating large‐scale jökulhlaups (catastrophic outburst floods) that deposited thick turbidite sequences preserved in the sediment record of Hestvatn. The high concentration of volcanic material incorporated within deglacial sediments indicates that along with IIS retreat, subglacial volcanic activity may have helped initiate some of the jökulhlaups. Onset of more stable Holocene conditions was reached after the final turbidite at ~10 ka
This content will become publicly available on January 1, 2025
- Award ID(s):
- 1836981
- NSF-PAR ID:
- 10504158
- Publisher / Repository:
- Bulletin of Volcanology
- Date Published:
- Journal Name:
- Bulletin of Volcanology
- Volume:
- 86
- Issue:
- 1
- ISSN:
- 1432-0819
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
ABSTRACT bp , when the IIS had withdrawn from most of the highlands of Iceland. -
Abstract Perspectives on past climate using lake sediments are critical for assessing modern and future climate change. These perspectives are especially important for water-stressed regions such as the western United States. One such region is northwestern California (CA), where Holocene-length hydroclimatic records are scarce. Here, we present a 9000-year, relative lake level record from Maddox Lake (CA) using a multi-indicator approach. The Early Holocene is characterized by variably low lake levels with a brief excursion to wetter climates/relative highstand ca. 8.4–8.06 cal ka BP, possibly related to the 8.2 ka cold event and changing Atlantic Meridional Overturning Circulation (AMOC). From 5.2–0.55 cal ka BP, Maddox Lake experienced a long-term regression, tracking changes in summer-winter insolation, tropical and northeast Pacific SSTs, and the southward migration of the ITCZ. This gradual regression culminated in a pronounced relative lowstand during the Medieval Climatic Anomaly (MCA). A marked relative highstand followed the MCA, correlative to the Little Ice Age. The latter reflects a far-field response to North Atlantic volcanism, solar variability, and possibly changes in AMOC and Arctic sea ice extent. Our results further confirm the hydroclimatic sensitivity of northwest California to various forcings including those emanating from the North Atlantic.
-
The North Atlantic was a key locus for circulation-driven abrupt climate change in the past and could play a similar role in the future. Abrupt cold reversals, including the 8.2 ka event, punctuated the otherwise warm early Holocene in the North Atlantic region and serve as useful paleo examples of rapid climate change. In this work, we assess the cryospheric response to early Holocene climate history on Baffin Island, Arctic Canada, using cosmogenic radionuclide dating of moraines. We present 39 new 10Be ages from four sets of multi-crested early Holocene moraines deposited by cirque glaciers and ice cap outlet glaciers, as well as erratic boulders along adjacent fiords to constrain the timing of regional deglaciation. The age of one moraine is additionally constrained by in situ 14C measurements, which confirm 10Be inheritance in some samples. All four moraines were deposited between ~9.2 and 8.0 ka, and their average ages coincide with abrupt coolings at 9.3 and 8.2 ka that are recorded in Greenland ice cores. Freshwater delivery to the North Atlantic that reduced the flux of warm Atlantic water into Baffin Bay may explain brief intervals of glacier advance, although moraine formation cannot be definitively tied to centennial-scale cold reversals. We thus explore other possible contributing factors, including ice dynamics related to retreat of Laurentide Ice Sheet outlet glaciers. Using a numerical glacier model, we show that the debuttressing effect of trunk valley deglaciation may have contributed to these morainebuilding events. These new age constraints and process insights highlight the complex behavior of the cryosphere during regional deglaciation and suggest that multiple abrupt cold reversalsdas well as deglacial ice dynamicsdlikely played a role in early Holocene moraine formation on Baffin Island.more » « less
-
Abstract. Investigating North Pacific climate variability during warmintervals prior to the Common Era can improve our understanding of thebehavior of ocean–atmosphere teleconnections between low latitudes and theArctic under future warming scenarios. However, most of the existing icecore records from the Alaskan and Yukon region only allow access to climateinformation covering the last few centuries. Here we present asurface-to-bedrock age scale for a 210 m long ice core recovered in 2013from the summit plateau of Begguya (Mt. Hunter; Denali National Park,Central Alaska). Combining dating by annual layer counting with absolutedates from micro-radiocarbon dating, a continuous chronology for the entireice core archive was established using an ice flow model. Calibrated14C ages from the deepest section (209.1 m, 7.7 to 9.0 ka cal BP)indicate that basal ice on Begguya is at least of early Holocene origin. Aseries of samples from a shallower depth interval (199.8 to 206.6 m) weredated with near-uniform 14C ages (3 to 5 ka cal BP). Our resultssuggest this may be related to an increase in annual net snow accumulationrates over this period following the Northern Hemisphere Holocene ClimateOptimum (around 8 to 5 kyr BP). With absolute dates constraining thetimescale for the last >8 kyr BP, this paleo-archive will allowfuture investigations of Holocene climate and the regional evolution ofspatial and temporal changes in atmospheric circulation and hydroclimate inthe North Pacific.
-
Abstract. Volcanic fallout in polar ice sheets provides important opportunities to date and correlate ice-core records as well as to investigate theenvironmental impacts of eruptions. Only the geochemical characterization of volcanic ash (tephra) embedded in the ice strata can confirm the sourceof the eruption, however, and is a requisite if historical eruption ages are to be used as valid chronological checks on annual ice layercounting. Here we report the investigation of ash particles in a Greenland ice core that are associated with a volcanic sulfuric acid layer previouslyattributed to the 79 CE eruption of Vesuvius. Major and trace element composition of the particles indicates that the tephra does not derive fromVesuvius but most likely originates from an unidentified eruption in the Aleutian arc. Using ash dispersal modeling, we find that only an eruptionlarge enough to include stratospheric injection is likely to account for the sizable (24–85 µm) ash particles observed in the Greenlandice at this time. Despite its likely explosivity, this event does not appear to have triggered significant climate perturbations, unlike some otherlarge extratropical eruptions. In light of a recent re-evaluation of the Greenland ice-core chronologies, our findings further challenge the previousassignation of this volcanic event to 79 CE. We highlight the need for the revised Common Era ice-core chronology to be formally accepted by the widerice-core and climate modeling communities in order to ensure robust age linkages to precisely dated historical and paleoclimate proxy records.more » « less