skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: High-resolution Holocene record from Torfdalsvatn, north Iceland, reveals natural and anthropogenic impacts on terrestrial and aquatic environments
Abstract. Open questions remain around the Holocene variability of climate in Iceland, including the relative impacts of natural and anthropogenic factors on Late Holocene vegetation change and soil erosion. The lacustrine sediment record from Torfdalsvatn, north Iceland, is the longest known in Iceland (≤12000 cal a BP) and along with its high sedimentation rate, provides an opportunity to develop high-resolution quantitative records that address these challenges. In this study, we use two sediment cores from Torfdalsvatn to construct a high-resolution age model derived from marker tephra layers, paleomagnetic secular variation, and radiocarbon. We then apply this robust age constraint to support a complete tephrochronology (>2200 grains analyzed in 33 tephra horizons) and sub-centennial geochemical (MS, TOC, C/N, δ13C, and BSi) and algal pigment records. Along with previously published proxy records from the same lake, these records demonstrate generally stable terrestrial and aquatic conditions during the Early and Middle Holocene, except for punctuated disturbances linked to major tephra fall events. During the Late Holocene, there is strong evidence for naturally driven algal productivity decline beginning around 1800 cal a BP. These changes closely follow regional Late Holocene cooling driven by decreases in Northern Hemisphere summer insolation and the expansion of sea-ice laden Polar Water around Iceland. Then at 880 cal a BP, ~200 years after the presumed time of human settlement, a second shift in the record begins and is characterized by a strong uptick in landscape instability and possibly soil erosion. Collectively, the Torfdalsvatn record highlights the resilience of low-elevation, low-relief catchments to the pre-settlement soil erosion in Iceland, despite a steadily cooling background climate. The precisely dated, high-resolution tephra and paleoenvironmental record from this site can serve as a regional template for north Iceland.  more » « less
Award ID(s):
1836981
PAR ID:
10554358
Author(s) / Creator(s):
; ; ; ; ; ;
Publisher / Repository:
Climate of the Past
Date Published:
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The Vedde Ash, originating from the Katla central volcano, Iceland, and taken to be dispersed across the North Atlantic and Europe at ~ 12 ka BP, is widely used as a geochronological marker. However, distal tephra layers with compositions like the Vedde Ash but of younger ages question the reliability of Vedde-like tephra layers as robust age control. Vedde-like tephra layers are rare in Icelandic sedimentary sequences and, where present, lack firm age control. Providing well-constrained local records of Early Holocene Katla layers is therefore critical to assess uncertainties related to the use of the Vedde Ash. Here we report three visible and stratigraphically separated Early Holocene Katla tephra layers from Torfdalsvatn, a lake in north Iceland, each with chemistry similar to the Vedde Ash. Using high-resolution 14C chronologies, we provide ages (± 1σ) for these tephra layers of 11,315 ± 180, 11,295 ± 195, and 11,170 ± 195 cal a BP. These observations reinforce that multiple explosive eruptions of Katla occurred over a 1000-year interval in the Early Holocene and challenge the precision of some paleoclimate records using the Vedde Ash as a geochronometer where age control is equivocal. This may lead to a re-evaluation of age models for some Early Holocene North Atlantic records. 
    more » « less
  2. Abstract. Paleoclimate reconstructions across Iceland provide a template for past changes in climate across the northern North Atlantic, a crucial region due to its position relative to the global northward heat transport system and its vulnerability to climate change. The roles of orbitally driven summer cooling, volcanism, and human impact as triggers of local environmental changes in the Holocene of Iceland remain debated. While there are indications that human impact may have reduced environmental resilience during late Holocene summer cooling, it is still difficult to resolve to what extent human and natural factors affected Iceland's late Holocene landscape instability. Here, we present a continuous Holocene fire record of northeastern Iceland from proxies archived in Stóra Viðarvatn sediment. We use pyrogenic polycyclic aromatic hydrocarbons (pyroPAHs) to trace shifts in fire regimes, paired with continuous biomarker and bulk geochemical records of soil erosion, lake productivity, and human presence. The molecular composition of pyroPAHs and a wind pattern reconstruction indicate a naturally driven fire signal that is mostly regional. Generally low fire frequency during most of the Holocene significantly increased at 3 ka and again after 1.5 ka BP before known human settlement in Iceland. We propose that shifts in vegetation type caused by cooling summers over the past 3 kyr, in addition to changes in atmospheric circulation, such as shifts in North Atlantic Oscillation (NAO) regime, led to increased aridity and biomass flammability. Our results show no evidence of faecal biomarkers associated with human activity during or after human colonisation in the 9th century CE. Instead, faecal biomarkers follow the pattern described by erosional proxies, pointing toward a negligible human presence and/or a diluted signal in the lake's catchment. However, low post-colonisation levels of pyroPAHs, in contrast to an increasing flux of erosional bulk proxies, suggest that farming and animal husbandry may have suppressed fire frequency by reducing the spread and flammability of fire-prone vegetation (e.g. heathlands). Overall, our results describe a fire frequency heavily influenced by long-term changes in climate through the Holocene. They also suggest that human colonisation had contrasting effects on the local environment by lowering its resilience to soil erosion while increasing its resilience to fire. 
    more » « less
  3. Abstract. Strong similarities in Holocene climate reconstructions derived from multipleproxies (BSi, TOC – total organic carbon, δ13C, C∕N, MS – magnetic susceptibility, δ15N)preserved in sediments from both glacial and non-glacial lakes across Icelandindicate a relatively warm early to mid Holocene from 10 to 6 ka,overprinted with cold excursions presumably related to meltwater impact onNorth Atlantic circulation until 7.9 ka. Sediment in lakes from glacialcatchments indicates their catchments were ice-free during this interval.Statistical treatment of the high-resolution multi-proxy paleoclimate lakerecords shows that despite great variability in catchment characteristics,the sediment records document more or less synchronous abrupt, colddepartures as opposed to the smoothly decreasing trend in Northern Hemispheresummer insolation. Although all lake records document a decline in summertemperature through the Holocene consistent with the regular decline insummer insolation, the onset of significant summer cooling occurs ∼5 ka at high-elevation interior sites but is variably later at sitescloser to the coast, suggesting that proximity to the sea may modulate the impactfrom decreasing summer insolation. The timing of glacier inception during themid Holocene is determined by the descent of the equilibrium line altitude(ELA), which is dominated by the evolution of summer temperature as summerinsolation declined as well as changes in sea surface temperature for coastalglacial systems. The glacial response to the ELA decline is also highlydependent on the local topography. The initial ∼5 ka nucleation ofLangjökull in the highlands of Iceland defines the onset of neoglaciationin Iceland. Subsequently, a stepwise expansion of both Langjökull andnortheast Vatnajökull occurred between 4.5 and 4.0 ka, with a secondabrupt expansion ∼3 ka. Due to its coastal setting and lowertopographic threshold, the initial appearance of Drangajökull in the NWof Iceland was delayed until ∼2.3 ka. All lake records reflect abruptsummer temperature and catchment disturbance at ∼4.5 ka, statisticallyindistinguishable from the global 4.2 ka event, and a second widespreadabrupt disturbance at 3.0 ka, similar to the stepwise expansion ofLangjökull and northeast Vatnajökull. Both are intervalscharacterized by large explosive volcanism and tephra distribution in Icelandresulting in intensified local soil erosion. The most widespread increase in glacier advance, landscapeinstability, and soil erosion occurred shortly after 2 ka, likely due to acomplex combination of increased impact from volcanic tephra deposition,cooling climate, and increased sea ice off the coast of Iceland. All lakerecords indicate a strong decline in temperature ∼1.5 ka, whichculminated during the Little Ice Age (1250–1850 CE) when the glaciersreached their maximum Holocene dimensions. 
    more » « less
  4. Sinkholes develop on carbonate landscapes when caves collapse and can subsequently become lake-like environments if they are flooded by local groundwater. Sediment cores retrieved from sinkholes have yielded high-resolution reconstructions of past environmental change, hydroclimate, and hurricane activity. However, our understanding of the internal sedimentary processes of these systems remains incomplete. Here, we use a multiproxy approach including sedimentology (stratigraphy, coarse-grained particle density, bulk organic matter content), micropaleontology (ostracods), and geochemistry (δ13C and δ2H on n-alkanoic acids) to reconstruct evidence for paleolimnology and regional hydroclimate from a continuous stratigraphic record (Emerald Pond sinkhole) in the northern Bahamas that spans the middle to late Holocene. Basal peat at 8.9 m below modern sea level documents the maximum sea-level position at ~ 8200 cal. yr BP. Subsequent upward vertical migration of the local aquifer caused by regional sea-level rise promoted carbonate-marl deposition from ~ 8300 to 1700 cal. yr BP. A shift in coarse particle deposition and ostracods at 5500 cal. yr BP suggests some environmental change, which may be related to one or multiple internal or external drivers. Sapropel deposition from ~ 1700 to 1300 cal. yr BP indicates a fundamental change in limnology to promote increased organic matter preservation, perhaps related to the regional cooling during the Dark Ages Cold Period. We find δ2H28 values are largely invariant from 7700 to 6150 cal. yr BP suggesting a generally stable hydroclimate (mean − 133‰, 1σ = 5‰). The shift to more depleted values (− 156‰, 1σ = 19‰) at ~ 6000–4800 cal. yr BP may be linked to a weakened (eastern displaced) North Atlantic Subtropical High. Nevertheless, additional local hydroclimate records are needed to better disentangle uncertainties from either internal or external influences on the resultant measurements. 
    more » « less
  5. Middle and Late Holocene sediments have not been extensively sampled in Lake Tanganyika, and much remains unknown about the response of the Rift Valley’s largest lake to major environmental shifts during the Holocene, including the termination of the African Humid Period (AHP). Here, we present an integrated study (sedimentology, mineralogy, and geochemistry) of a radiocarbon-dated sediment core from the Kavala Island Ridge (KIR) that reveals paleoenvironmental variability in Lake Tanganyika since the Middle Holocene with decadal to centennial resolution. Massive blue-gray sandy silts represent sediments deposited during the terminal AHP (~5880–4640 cal yr BP), with detrital particle size, carbon concentrations, light stable isotopes, and mineralogy suggesting an influx of river-borne soil organic matter and weathered clay minerals to the lake at that time. Enhanced by the AHP’s warm and wet conditions, chemical weathering and erosion of Lake Tanganyika’s watershed appears to have promoted considerable nutrient recharge to the lake system. Following a relatively gradual termination of the AHP over the period from ~4640 cal yr BP to ~3680 cal yr BP, laminated and organic carbon-rich sediments began accumulating on the KIR. δ15Nbulk, C/N, and hydrogen index data suggest high relative primary production from a mix of algae and cyanobacteria, most likely in response to nutrient availability in the water column under a cooler and seasonally dry climate from ~3680 to 1100 cal yr BP. Sediments deposited during the Common Era show considerable variability in magnetic susceptibility, total organic carbon content, carbon isotopes, and C/N, consistent with dynamic hydroclimate conditions that affected the depositional patterns, including substantial changes around the Medieval Climate Anomaly and Little Ice Age. Data from this study highlight the importance of sedimentary records to constrain boundary conditions in hydroclimate and nutrient flux that can inform long-term ecosystem response in Lake Tanganyika. 
    more » « less