skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The DOI auto-population feature in the Public Access Repository (PAR) will be unavailable from 4:00 PM ET on Tuesday, July 8 until 4:00 PM ET on Wednesday, July 9 due to scheduled maintenance. We apologize for the inconvenience caused.


Title: Lepidoptera research in Puerto Rico: Reconnecting with historical legacies to guide future priorities
Abstract The Caribbean archipelago of Puerto Rico supports a diverse flora and fauna and is located in a region characterized by complex socio‐economic and environmental change. The diversity of entomofauna across Puerto Rico has received considerable attention in wide‐scale research over the last century, with particular emphasis on the order Lepidoptera as the subject of substantial taxonomic and ecological surveys. However, much of this work is incomplete, outdated, or has been obscured in gray literature. Thus, our primary objectives were to contextualize the role of past research in the current understanding of Puerto Rican Lepidoptera and to outline an agenda for future research. Specifically, we provide an overview of taxonomic, ecological, agricultural, and conservation Lepidoptera research in Puerto Rico and highlight key studies and historical datasets. We found that, despite a strong taxonomic legacy, native moth taxonomy remains poorly understood, except for a few major pests. Further, much of the recent Lepidoptera research has focused on short‐term evaluations of agricultural pests, necessitated by immediate economic needs. The current ecological status of Lepidoptera on the islands is unknown. Therefore, prioritizing ecological research could provide timely insight for understanding changing Lepidoptera diversity and distribution and for conserving this biologically and economically significant group. Greater emphasis on long‐term monitoring and digitization of museum collections would be particularly useful for quantifying past and forecasting future impacts of global change. Abstract in Spanish is available with online material.  more » « less
Award ID(s):
2042453
PAR ID:
10504160
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
Wiley
Date Published:
Journal Name:
Biotropica
Volume:
55
Issue:
6
ISSN:
0006-3606
Page Range / eLocation ID:
1215 to 1232
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract AimTo better understand the potential impact of climate change on butterfly assemblages across a tropical island, we model the potential for taxonomic and functional homogenization and determine climate‐ and trait‐mediated shifts in projected species distributions. LocationPuerto Rico. MethodsWe used thousands of museum records of diurnal Lepidoptera to model current (1970–2000) and forecast future (2061–2080) species distributions and combined these to test for taxonomic and functional homogenization. We then quantified climatic‐mediated effects on current and forecasted taxonomic and functional composition and, specifically, whether temperature was a primary driver, as predicted by the temperature–size rule and the thermal melanism hypotheses. Finally, we measured wing traits important in thermoregulation (size and colour) and determined trait‐mediated changes in forecasted species distributions over time. ResultsBased on ensemble model outputs, taxonomic and functional richness and turnover were predicted to vary across the island's complex topography. Our models projected an increase in taxonomic and functional richness over time, and a decrease in taxonomic and functional turnover – a signature of biotic homogenization. Under future climate scenarios, models projected a decrease in wing length and an increase in wing brightness at higher elevations. One variable, temperature seasonality, was the strongest predicted driver of both the current spatial distribution and the projected per cent change over time for not only wing traits but also taxonomic and functional richness and turnover. Main conclusionsThe species distribution models generated here identify several priority regions and species for future research and conservation efforts. Our work also highlights the role of seasonality and climatic variability on diverse tropical Lepidoptera assemblages, suggesting that climatic variability may be an important, albeit overlooked, driver of climate change responses. 
    more » « less
  2. Abstract BACKGROUNDOstrinia furnacalis(ACB) andOstrinia nubilalis(ECB) are devastating pests of the agricultural crop maize worldwide. However, little is known about their potential distribution and niche shifts during their global invasion. Since long‐term selection to past climate variability has shaped their historical niche breadth, such niche shifts may provide an alternative basis for understanding their responses to present and future climate change. By integrating the niche unfilling, stability, and expansion situations into a single framework, our study quantifies the patterns of niche shift in the spatial distribution of these two pests during the different periods. RESULTSOur results show that the overall suitable habitats of ACB and ECB in the future decrease but highly and extremely suitable habitat will become more widespread, suggesting these two insects may occur more frequently in specific regions. Compared with Southeast Asia and Australia, the ACB niche in China exhibited expansion rather than unfilling. For ECB, initial niches have a tendency to be retained in Eurasia despite there also being potential for expansion in North America. The niche equivalency and similarity test results further indicate that niche shifts were common for both ACB and ECB in different survival regions during their colonization of new habitat and their suitable habitat changes during the paleoclimate were associated with climatic changes. CONCLUSIONSThese findings improve our understanding of the ecological characteristics of ACB and ECB worldwide, and will be useful in the development of prevention and control strategies for two insect pests worldwide. © 2024 Society of Chemical Industry. 
    more » « less
  3. The National Ecological Observation Network (NEON) is a thirty-year, open-source, continental-scale ecological observation platform. The objective of the NEON project is to provide data to facilitate the understanding and forecasting of the ecological impacts of anthropogenic change at a continental scale. Fish are sentinel taxa in freshwater systems, and the NEON has been sampling and collecting fish assemblage data at wadable stream sites for six years. One to two NEON wadable stream sites are located in sixteen domains from Alaska to Puerto Rico. The goal of site selection was that sites represent local conditions but with the intention that site data be analyzed at a continental observatory level. Site selection did not include fish assemblage criteria. Without using fish assemblage criteria, anomalies in fish assemblages at the site level may skew the expected spatial patterns of North American stream fish assemblages, thereby hindering change detection in subsequent years. However, if NEON stream sites are representative of the current spatial distributions of North American stream fish assemblages, we could expect to find the most diverse sites in Atlantic drainages and the most depauperate sites in Pacific drainages. Therefore, we calculated the alpha and regional (beta) diversities of wadable stream sites to highlight spatial patterns. As expected, NEON sites followed predictable spatial diversity patterns, which could facilitate future change detection and attribution to changes in environmental drivers, if any. 
    more » « less
  4. The National Ecological Observatory Network (NEON) is gathering select ecological and taxonomic data across 81 sites in the United States and Puerto Rico. Lichens are one of the organismal groups that NEON has not yet assessed across these sites. Here we sampled lichens at Ordway-Swisher Biological Station (OSBS), a NEON site in north central Florida, to provide a baseline survey of the commonly encountered macrolichens (foliose, fruticose, and squamulose lichens). Macrolichens represent a subset of observable lichens and are more commonly surveyed than crustose lichens. Seventy-four species of macrolichens were collected, including 25 occurrences that constitute new records for Putnam County, Florida. The lichen diversity at OSBS comprised approximately 30% of the macrolichen diversity known from the entire state of Florida. Fifty-four taxa are common in the state of Florida, 12 infrequent across the state, and eight are considered rare. Macrolichens were the seventh most species-rich taxonomic groups at OSBS and more diverse than the NEON focal groups of mammals and fish. Lastly, we suggest a theoretical roadmap for how lichenologists could work together with NEON to include lichens in future datasets. We hope that biologists focused on other key organismal groups will sample in NEON sites so that NEON data can be leveraged appropriately in future cross-taxon studies of biodiversity at the continental scale. 
    more » « less
  5. Temperature variability associated with climate change may exacerbate the ecological and economic impacts of insect pests, such as the widespread fall armyworm (Spodoptera frugiperda). However, our current understanding of how temperature changes impact insect performance often comes from studies using a series of constant temperature treatments. These may not 
    more » « less