skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Quantifying Elastic Properties of Environmental Biofilms using Optical Coherence Elastography
Biofilms are complex biomaterials comprising a well-organized network of microbial cells encased in self-produced extracellular polymeric substances (EPS). This paper presents a detailed account of the implementation of optical coherence elastography (OCE) measurements tailored for the elastic characterization of biofilms. OCE is a non-destructive optical technique that enables the local mapping of the microstructure, morphology, and viscoelastic properties of partially transparent soft materials with high spatial and temporal resolution. We provide a comprehensive guide detailing the essential procedures for the correct implementation of this technique, along with a methodology to estimate the bulk Young's modulus of granular biofilms from the collected measurements. These consist of the system setup, data acquisition, and postprocessing. In the discussion, we delve into the underlying physics of the sensors used in OCE and explore the fundamental limitations regarding the spatial and temporal scales of OCE measurements. We conclude with potential future directions for advancing the OCE technique to facilitate elastic measurements of environmental biofilms.  more » « less
Award ID(s):
1937290 2100447
PAR ID:
10504180
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
MyJove Corp.
Date Published:
Journal Name:
Journal of Visualized Experiments
Issue:
205
ISSN:
1940-087X
Page Range / eLocation ID:
e66118
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Bacterial biofilms are highly abundant 3D living materials capable of performing complex biomechanical and biochemical functions, including programmable growth, self‐repair, filtration, and bioproduction. Methods to measure internal mechanical properties of biofilms in vivo with spatial resolution on the cellular scale have been lacking. Here, thousands of cells are tracked inside living 3D biofilms of the bacteriumVibrio choleraeduring and after the application of shear stress, for a wide range of stress amplitudes, periods, and biofilm sizes, which revealed anisotropic elastic and plastic responses of both cell displacements and cell reorientations. Using cellular tracking to infer parameters of a general mechanical model, spatially‐resolved measurements of the elastic modulus inside the biofilm are obtained, which correlate with the spatial distribution of the polysaccharides within the biofilm matrix. The noninvasive microrheology and force‐inference approach introduced here provides a general framework for studying mechanical properties with high spatial resolution in living materials. 
    more » « less
  2. Abstract A new technique was used to measure the viscoelasticity of in vivoPseudomonas aeruginosabiofilms. This was done through ex vivo microrheology measurements of in vivo biofilms excised from mouse wound beds. To our knowledge, this is the first time that the mechanics of in vivo biofilms have been measured. In vivo results are then compared to typical in vitro measurements. Biofilms grown in vivo are more relatively elastic than those grown in a wound-like medium in vitro but exhibited similar compliance. Using various genetically mutatedP. aeruginosastrains, it is observed that the contributions of the exopolysaccharides Pel, Psl, and alginate to biofilm viscoelasticity were different for the biofilms grown in vitro and in vivo. In vitro experiments with collagen containing medium suggest this likely arises from the incorporation of host material, most notably collagen, into the matrix of the biofilm when it is grown in vivo. Taken together with earlier studies that examined the in vitro effects of collagen on mechanical properties, we conclude that collagen may, in some cases, be the dominant contributor to biofilm viscoelasticity in vivo. 
    more » « less
  3. Field-resolved measurements of few-cycle laser waveforms allow access to ultrafast electron dynamics in light–matter interactions and are key to future lightwave electronics. Recently, sub-cycle gating based on nonlinear excitation in active pixel sensors has allowed the first single-shot measurements of mid-infrared optical fields. Extending the techniques to shorter wavelengths, however, is not feasible using silicon-based detectors with bandgaps in the near-infrared. Here, we demonstrate an all-optical sampling technique for near-infrared laser fields, wherein an intense fundamental field generates a sub-cycle gate through nonlinear excitation of a wide-bandgap crystal, in this case, ZnO, which can sample the electric field of a weak perturbing pulse. By using a crossed-beam geometry, the temporal evolution of the perturbing field is mapped onto a transverse spatial axis of the nonlinear medium, and the waveform is captured in a single measurement of the spatially resolved fluorescence emission from the crystal. The technique is demonstrated through field-resolved measurements of the field reshaping during nonlinear propagation in the ZnO detection crystal. 
    more » « less
  4. Abstract Structural coloration in biological systems arises from the interaction of light with micro‐ and nanoscale structures, producing vivid, pigment‐free optical effects. While this phenomenon is well‐documented in butterflies and birds, recent reports have revealed that certain microorganisms, particularly those in theBacteroidetesphylum, also exhibit striking structural coloration when formed into biofilms. In the marine bacteriumCellulophaga lytica(C. lytica), iridescence emerges dynamically during biofilm development and is tightly coupled to gliding motility, a surface‐associated mechanism of locomotion. However, the influence of environmental mechanics on this self‐organizing photonic behavior remains poorly understood. This investegation demonstrates how substrate properties, specifically agar stiffness and salt‐modulated stress relaxation, regulate the gliding motility and emergent iridescence ofC. lyticabiofilms. Time‐lapse imaging, quantitative optical analysis, and bulk rheological measurements demonstrate that increasing agar stiffness enhances early‐stage collective motility and promotes the formation of green‐iridescent biofilms. Furthermore, salt concentration modulates the viscoelastic properties of the substrate, impacting both motility dynamics and the spatial evolution of structural color. Correlating substrate stiffness and development time with observed dominant iridescent hue enables the construction of a phase map revealing distinct regimes of photonic behavior, thus providing a framework for designing biologically‐inspired living optical systems with customizable structural colour. 
    more » « less
  5. We present the development of a portable Thomson scattering diagnostic system allowing simultaneous spatially and temporally resolved plasma property measurements for low density plasmas. The setup uses a compact pulsed Nd:YAG laser (532 nm) as the light source with suppression by two volume Bragg grating notch filters and dispersion with a single-stage spectrometer before measurement with an intensified camera. A key issue is the detailed light collection and how it impacts the sensitivity and elastic light suppression, for which we have investigated two optical configurations, one based on a 7 × 1 linear fiber bundle and the other based on a slit spatial-filter. We find that the configuration with the slit spatial-filter provides a higher sensitivity by a factor of ∼2 along with more uniform spatial response. We have developed a custom pulsed-plasma setup with a modulation at 20 kHz, representative of the Hall thruster breathing mode oscillation, to show the possibility of temporally resolved measurements for electric propulsion applications. We have successfully recorded the variations in electron number density and temperature with sub-mm spatial resolution and capturing ten temporal points over the 50 µs modulation period. The detection limit of electron density (with the spatial-filter configuration) is ∼1.6 × 1017 m−3, which is ∼1/10 of the plasma density in the acceleration channel of Hall thrusters. 
    more » « less